
Polyspace® Release Notes

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Polyspace® Release Notes
© COPYRIGHT 2011 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Summary by Version . 1

Version 8.2 (R2011b) Polyspace for C/C++ Products . . . 8

Version 6.2 (R2011b) Polyspace for Ada Products 21

Version 5.8 (R2011b) PolyspaceModel Link Products . . 26

Version 8.1 (R2011a) Polyspace for C/C++ Products . . . 29

Version 6.1 (R2011a) Polyspace for Ada Products 48

Version 5.7 (R2011a) PolyspaceModel Link Products . . 60

Version 8.0 (R2010b) Polyspace for C/C++ Products . . . 64

Version 6.0 (R2010b) Polyspace for Ada Products 90

Version 5.6 (R2010b) PolyspaceModel Link Products . . 98

Version 7.2 (R2010a) Polyspace for C/C++ Products . . . 100

Version 5.5 (R2010a) Polyspace for Ada and Model Link
Products . 127

Version 7.1 (R2009b) Polyspace for C/C++ Products . . . 135

Version 5.4 (R2009b) Polyspace for Ada and Model Link
Products . 141

Version 7.0 (R2009a) Polyspace for C/C++ Products . . . 149

iii

Version 5.3 (R2009a) Polyspace for Ada and Model Link
Products . 157

Version 6.0 (R2008b) Polyspace for C/C++ Products . . . 160

Version 5.2 (R2008b) Polyspace for Ada and Model Link
Products . 162

Version 5.1 (R2008a) Polyspace Software 165

Compatibility Summary for Polyspace Software 176

iv Contents

Polyspace® Release Notes

Summary by Version
This table provides quick access to what’s new in each version. For
clarification, see “Using Release Notes” on page 6.

Version (Release) New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

Latest Version for
C/C++ Products:
V8.2 (R2011b)

Yes
Details

Yes
Summary

Includes fixes:
Polyspace Client for
C/C++ Bug Reports
Polyspace Server for
C/C++ Bug Reports

Latest Version for
Ada Products:
V6.2 (R2011b)

Yes
Details

Yes
Summary

Includes fixes:
Polyspace Client for
Ada Bug Reports
Polyspace Server for
Ada Bug Reports

Latest Version
for Model Link
Products:
V5.8 (R2011b)

Yes
Details

No Includes fixes:
Polyspace Model Link
SL Bug Reports
Polyspace Model Link
TL Bug Reports
Polyspace UML Link
RH Bug Reports

V8.1 (R2011a) for
C/C++ Products:

Yes
Details

Yes
Summary

Includes fixes:
Polyspace Client for
C/C++ Bug Reports
Polyspace Server for
C/C++ Bug Reports

1

http://www.mathworks.com/support/bugreports/?product=PC&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PC&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PC&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PA&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PA&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PA&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PG&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PG&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PH&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PH&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PI&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PI&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PC&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PC&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PC&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2011a

Polyspace® Release Notes

Version (Release) New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

V6.1 (R2011a) for Ada
Products:

Yes
Details

Yes
Summary

Includes fixes:
Polyspace Client for
Ada Bug Reports
Polyspace Server for
Ada Bug Reports

V5.7 (R2011a) for
Model Link Products:

Yes
Details

Yes
Summary

Includes fixes:
Polyspace Model Link
SL Bug Reports
Polyspace Model Link
TL Bug Reports
Polyspace UML Link
RH Bug Reports

V8.0 (R2010b) for
C/C++ Products:

Yes
Details

Yes
Summary

Includes fixes:
Polyspace Client for
C/C++ Bug Reports
Polyspace Server for
C/C++ Bug Reports

V6.0 (R2010b) for Ada
Products:

Yes
Details

Yes
Summary

Includes fixes:
Polyspace Client for
Ada Bug Reports
Polyspace Server for
Ada Bug Reports

V5.6 (R2010b) for
Model Link Products:

Yes
Details

Yes
Summary

Includes fixes:
Polyspace Model Link
SL Bug Reports
Polyspace Model Link
TL Bug Reports
Polyspace UML Link
RH Bug Reports

2

http://www.mathworks.com/support/bugreports/?product=PA&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PA&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PA&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PG&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PG&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PH&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PH&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PI&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PI&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PC&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PC&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PC&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PA&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PA&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PA&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PG&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PG&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PH&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PH&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PI&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PI&release=R2010b

Summary by Version

Version (Release) New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

V7.2 (R2010a) for
C/C++ Products

Yes
Details

Yes
Summary

Includes fixes:
Polyspace Client for
C/C++ Bug Reports
Polyspace Server for
C/C++ Bug Reports

V5.5 (R2010a) for
Ada and Model Link
Products

Yes
Details

Yes
Summary

Includes fixes:
Polyspace Client for
Ada Bug Reports
Polyspace Server for
Ada Bug Reports
Polyspace Model Link
SL Bug Reports
Polyspace Model Link
TL Bug Reports
Polyspace UML Link
RH Bug Reports

V7.1 (R2009b) for
C/C++ Products

Yes
Details

Yes
Summary

Includes fixes:
Polyspace Client for
C/C++ Bug Reports
Polyspace Server for
C/C++ Bug Reports

3

http://www.mathworks.com/support/bugreports/?product=PC&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PC&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PC&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PA&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PA&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PA&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PG&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PG&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PH&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PH&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PI&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PI&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PC&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PC&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PC&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2009b

Polyspace® Release Notes

Version (Release) New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

V5.4 (R2009b) for
Ada and Model Link
Products

Yes
Details

Yes
Summary

Includes fixes:
Polyspace Client for
Ada Bug Reports
Polyspace Server for
Ada Bug Reports
Polyspace Model Link
SL Bug Reports
Polyspace Model Link
TL Bug Reports
Polyspace UML Link
RH Bug Reports

V7.0 (R2009a) for
C/C++ Products

Yes
Details

Yes
Summary

Includes fixes:
Polyspace Client for
C/C++ Bug Reports
Polyspace Server for
C/C++ Bug Reports

V5.3 (R2009a) for
Ada and Model Link
Products

Yes
Details

No Includes fixes:
Polyspace Client for
Ada Bug Reports
Polyspace Server for
Ada Bug Reports
Polyspace Model Link
SL Bug Reports
Polyspace Model Link
TL Bug Reports
Polyspace UML Link
RH Bug Reports

V6.0 (R2008b) for
C/C++ Products

Yes
Details

No Includes fixes:
Polyspace Client for
C/C++ Bug Reports
Polyspace Server for
C/C++ Bug Reports

4

http://www.mathworks.com/support/bugreports/?product=PA&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PA&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PA&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PG&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PG&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PH&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PH&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PI&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PI&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PC&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PC&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PC&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PA&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PA&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PA&release=R2009a
http://www.mathworks.com/support/bugreports/search_results?search_executed=1&release_filter=Exists+in&support_product=PF&release=2009a
http://www.mathworks.com/support/bugreports/search_results?search_executed=1&release_filter=Exists+in&support_product=PF&release=2009a
http://www.mathworks.com/support/bugreports/search_results?search_executed=1&release_filter=Exists+in&support_product=PF&release=2009a
http://www.mathworks.com/support/bugreports/search_results?search_executed=1&release_filter=Exists+in&support_product=PG&release=2009a
http://www.mathworks.com/support/bugreports/search_results?search_executed=1&release_filter=Exists+in&support_product=PG&release=2009a
http://www.mathworks.com/support/bugreports/search_results?search_executed=1&release_filter=Exists+in&support_product=PH&release=2009a
http://www.mathworks.com/support/bugreports/search_results?search_executed=1&release_filter=Exists+in&support_product=PH&release=2009a
http://www.mathworks.com/support/bugreports/search_results?search_executed=1&release_filter=Exists+in&support_product=PI&release=R2009a
http://www.mathworks.com/support/bugreports/search_results?search_executed=1&release_filter=Exists+in&support_product=PI&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PC&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PC&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PC&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2008b

Summary by Version

Version (Release) New Features and
Changes

Version
Compatibility
Considerations

Fixed Bugs and
Known Problems

V5.2 (R2008b) for
Ada and Model Link
Products

Yes
Details

No Includes fixes:
Polyspace Client for
Ada Bug Reports
Polyspace Server for
Ada Bug Reports
Polyspace Model Link
SL Bug Reports

V5.1 (R2008a) Yes
Details

Yes
Summary

Includes fixes:
Polyspace Client for
C/C++ Bug Reports
Polyspace Server for
C/C++ Bug Reports
Polyspace Client for
Ada Bug Reports
Polyspace Server for
Ada Bug Reports
Polyspace Model Link
SL Bug Reports

Previous Versions Includes fixes:
Polyspace Client for
C/C++ Bug Reports
Polyspace Server for
C/C++ Bug Reports
Polyspace Server for
Ada Bug Reports
Polyspace Model Link
SL Bug Reports

5

http://www.mathworks.com/support/bugreports/?product=PA&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PA&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PA&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PG&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PG&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PC&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PC&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PC&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PA&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PA&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PA&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PG&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PG&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PC&release=R2007a+
http://www.mathworks.com/support/bugreports/?product=PC&release=R2007a+
http://www.mathworks.com/support/bugreports/?product=PC&release=R2007a+
http://www.mathworks.com/support/bugreports/?product=PB&release=R2007a+
http://www.mathworks.com/support/bugreports/?product=PB&release=R2007a+
http://www.mathworks.com/support/bugreports/?product=PB&release=R2007a+
http://www.mathworks.com/support/bugreports/?product=PF&release=R2007a+
http://www.mathworks.com/support/bugreports/?product=PF&release=R2007a+
http://www.mathworks.com/support/bugreports/?product=PF&release=R2007a+
http://www.mathworks.com/support/bugreports/?product=PG&release=R2007a+
http://www.mathworks.com/support/bugreports/?product=PG&release=R2007a+

Polyspace® Release Notes

Using Release Notes
Use release notes when upgrading to a newer version to learn about:

• New features

• Changes

• Potential impact on your existing files and practices

Review the release notes for other MathWorks® products required for this
product (for example, MATLAB® or Simulink®). Determine if enhancements,
bugs, or compatibility considerations in other products impact you.

If you are upgrading from a software version other than the most recent one,
review the current release notes and all interim versions. For example, when
you upgrade from V1.0 to V1.2, review the release notes for V1.1 and V1.2.

What Is in the Release Notes

New Features and Changes

• New functionality

• Changes to existing functionality

Version Compatibility Considerations

When a new feature or change introduces a reported incompatibility between
versions, the Compatibility Considerations subsection explains the
impact.

Compatibility issues reported after the product release appear under Bug
Reports at the MathWorks Web site. Bug fixes can sometimes result
in incompatibilities, so review the fixed bugs in Bug Reports for any
compatibility impact.

Fixed Bugs and Known Problems

MathWorks offers a user-searchable Bug Reports database so you can view
Bug Reports. The development team updates this database at release time

6

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/

Summary by Version

and as more information becomes available. Bug Reports include provisions
for any known workarounds or file replacements. Information is available
for bugs existing in or fixed in Release 14SP2 or later. Information is not
available for all bugs in earlier releases.

Access Bug Reports using your MathWorks Account.

Documentation on the MathWorks Web Site
Related documentation is available on mathworks.com for the latest release
and for previous releases:

• Latest product documentation

• Archived documentation

7

http://www.mathworks.com/help/
http://www.mathworks.com/help/doc-archives.html

Polyspace® Release Notes

Version 8.2 (R2011b) Polyspace for C/C++ Products
This table summarizes what’s new in V8.2 (R2011b):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Includes fixes:
Polyspace Client for C/C++
Bug Reports
Polyspace Server for C/C++
Bug Reports

New features and changes introduced in this version are organized by product:

• “Polyspace® Client for C/C++ Product” on page 8

• “Polyspace® Server for C/C++ Product” on page 19

Polyspace Client for C/C++ Product

STD_LIB Check
Previously, if the arguments of a function that belonged to the C standard
library were not valid, the software would generate a check within the
corresponding stub in __polyspace_stdstubs.c. In addition, the check
category (visible in the procedural entities view) did not indicate a link to
the standard library.

Now, Polyspace® supports a new check category STD_LIB, which allows easier
review of run-time errors arising from standard library calls. For example,
if a standard library function call does not contain valid arguments, the
software generates a red STD_LIB check at the function call in your code. The
check does not appear in __polyspace_stdstubs.c.

For more information, see “Stubbing Standard Library Functions”.

8

http://www.mathworks.com/support/bugreports/?product=PC&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PC&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PC&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2011b

Version 8.2 (R2011b) Polyspace® for C/C++ Products

Compatibility Considerations. Due to the introduction of the STD_LIB
check, verification results may change when compared to previous versions
of the software.

In addition, since the STD_LIB check has a different location and aggregates
information from multiple checks, you cannot import review comments on
standard library checks from previous releases.

For example, if you commented a check in the standard stubs using R2011a
results, that comment is lost when you import comments from the R2011a
results into R2011b results.

Enhanced MISRA-C Coding Rules Checker
The following improvements have been made:

• Compliance with MISRA-C:2004 Technical Corrigendum 1 — For rules 4.1,
5.1, 5.3, 6.1, 6.3, 7.1, 9.2, 10.5, 12.6, 13.5

• New support for rules 6.2, 14.1, and 17.2

• New option -boolean-types, which supports rules 12.6, 13.2, and 15.4

• Enhanced support for rules 1.1, 2.3, 5.2, 5.4, 5.5, 5.6, 5.7, 6.4, 8.1, 8.5, 11.1,
11.2, 11.4, 12.3, 12.4, 13.1, 13.7, 15.2, 16.8, 17.3, 17.6, 19.4, 19.15, and 20.1

For more information, see “Checking Coding Rules”.

Compatibility Considerations. Due to the improvements to the MISRA
C® coding rules checker, verification results may change when compared
to previous versions of the software.

Review Orange Checks that are Potential Run-Time Errors
Previously, there were two modes in which you could review verification
results — manual and assistant. For the manual mode, you set the Assistant
slider to Off and the software displayed all orange checks (in addition to the
red and green checks) . With the assistant mode, there were three levels of
review — corresponding to settings 1, 2, and 3 of the Assistant slider. You
could specify the number of orange checks to display through the Assistant
Configuration tab in the Polyspace Preference dialog box.

9

Polyspace® Release Notes

Now, Polyspace allows you to review results at five different levels. You can
set the Review slider to 0, 1, 2, 3, or All:

• 0— Display red and gray checks. In addition, display orange checks that
are potential run-time errors. On the Polyspace Preference > Review
Configuration tab, you can specify the type of potential run-time errors
that you are interested in. You have the option of not displaying any orange
checks.

• 1, 2, and 3— This functionality is unchanged. Display red, gray, and green
checks. In addition, display orange checks according to values specified on
the Polyspace Preference > Review Configuration tab.

• All— Display red, gray, green, and all orange checks.

The Assistant Configuration tab is renamed the Review Configuration
tab.

For more information, see “Reviewing Results Systematically” and “Reviewing
All Checks”.

Display Sources of Orange Checks
The software identifies, where possible, code that is the source of orange
checks and provides information about this code on the new Orange Sources
tab. You can display this tab in the Run-Time Checks perspective, and see
the following columns of information:

• Type —Type of code element that causes orange check

• Name — Name of code element

• File — Name of source file

• Line — Line number in source file

• Max Oranges — Maximum number of orange checks arising from code
element

• Suggestion — How you can resolve the orange check

For more information, see “Viewing Sources of Orange Checks”.

10

Version 8.2 (R2011b) Polyspace® for C/C++ Products

With some orange checks, through this new tab, you can add or modify
data range specifications to resolve the checks. See “Refining Data Range
Specifications”.

Enhanced Automatic Orange Tester
Previously, you had to run the Automatic Orange Tester manually after the
completion of a verification. Now, when you select the Automatic Orange
Tester option

• You specify the new option -automatic-orange-tester. Polyspace still
supports the previous option -prepare-automatic-tests in R2011b.
However, -prepare-automatic-tests will be removed from a future
release.

• The softwares runs dynamic tests on the orange code automatically at
the end of the verification.

• You can specify test parameters when you configure your verification. If
you do not specify test parameters, the software uses default test parameter
values.

• If you run a server verification, the software will run the dynamic tests
on the server.

The Automatic Orange Tester now also supports the following options:

• -ignore-float-rounding

• -respect-types-in-globals

• -respect-types-in-fields

• -entry-points

For more information, see “Automatically Testing Orange Code”.

No Gray Checks in Unreachable Code
The only gray checks that Polyspace generates now are UNR checks for
unreachable branches of code. In addition, Polyspace generates the UNR check
only at the highest level of a branch. You no longer see nested UNR checks ,
that is, UNR checks in sub-branches.

11

Polyspace® Release Notes

In addition, the software displays two new metrics for the project in the
procedural entities view:

• unp— Number of unreachable procedures (functions) as a fraction of the
total number of procedures (functions)

• cov — Percentage of elementary operations in executable procedures
(functions) covered by verification

These metrics provide:

• A measure of the code coverage achieved by the Polyspace verification.

• Indicators about the validity of your Polyspace configuration. For example,
a large unp value and a low cov value may indicate an early red check or
missing function call.

See “Run-Time Checks Pane”.

Compatibility Considerations. Due to the removal of non-UNR gray checks
and nested UNR checks, verification results may change when compared to
previous versions of the software.

Global Variable Range Information
In the Variable Access pane, Polyspace displays range information for
read and write access operations on global variables within each source file.
Previously, the displayed value was the union of all access operations on the
global variable within a file. The software did not display range information
for individual operations. Now, for global variables that are integers (signed
and unsigned) or floating point variables (float and double), Polyspace also
provides range information for the individual access operations from which
the union value is obtained.

12

Version 8.2 (R2011b) Polyspace® for C/C++ Products

See “Variable Access Pane”.

Read and Write Access in Dead Code
If a read or write access operation on a global variable lies within dead code,
then Polyspace colors the operation gray in the Variable Access pane. When
you examine verification results, you can hide these operations by clicking the

new filter button . See “Variable Access Pane”.

Run All Verifications in Project
You can have many verifications within a project, each verification being
associated with an active configuration. Previously, you could only run one
verification at a time from the Polyspace verification environment (PVE).

Now, if you select a project and click the button , Polyspace will
run all verifications in the project. See “Running a Verification”.

Specifying Functions Not Called by Generated Main
You can now specify source files in your project that the main generator
will ignore. Functions defined in these source files are not called by the
automatically generated main.

Use this option for files containing function bodies, so that the verification
looks for the function body only when the function is called by a primary
source file and no body is found.

For more information, see “Verifying a C Application Without a “Main””in the
.Polyspace Products for C/C++ User’s Guide.

13

Polyspace® Release Notes

Stubbing Specific Functions
You can now specify specific functions that you want the software to stub
using the option Functions to stub (-functions-to-stub).

For more information, see “Stubbing” in the .Polyspace Products for C/C++
User’s Guide.

Changes to Verification Results

• “Compatibility Considerations” on page 14

• “Cross-block Critical Sections” on page 14

• “Function Pointers in extern const Structure Stubbed” on page 15

• “Pointers point to the Beginning of Allocated Objects” on page 15

Compatibility Considerations. Verification results may change when
compared to previous versions of the software. Some checks may change color,
and the Selectivity rate of your results may change.

Refer to the following sections for information on the specific changes.

Cross-block Critical Sections. In previous releases, the beginning and the
end of a critical section must be in same block.

In R2011b, every kind of cross block critical section is supported. However,
some constructs may raise a warning.

For example:

void foo(void) {
BEGIN_CS();

for (;;) {
END_CS();

}
}

Warning: Ending critical section cs in a loop in test.foo

14

Version 8.2 (R2011b) Polyspace® for C/C++ Products

Function Pointers in extern const Structure Stubbed. In previous
releases, function pointers in extern const structures were not always
stubbed, and could result in a COR error.

For example:

typedef struct {
int a;
void (*foo)(void);
} AA;

extern const AA aaa;
extern AA aaaa;

extern const a;
const b;

void foo(void)
{
int bb;
bb = a;
bb = b;

bb = aaa.a;
aaaa.foo();
aaa.foo(); //COR Error in previous releases
}

In R2011b, every extern variable will be stubbed regardless of its qualifiers.

Pointers point to the Beginning of Allocated Objects. In previous
releases, a pointer in the generated main points anywhere in the allocated
buffer, which could cause problems when using DRS.

Allocated objects now point at the beginning of the object.

Changes to Coding Rules Checker Results

• “Compatibility Considerations” on page 16

15

Polyspace® Release Notes

• “New MISRA-C Rules Supported” on page 16

• “MISRA-C: Rule 1.1 Messages” on page 16

• “MISRA-C: Rule 6.3 Improvements” on page 16

• “MISRA-C: Rule 17.6 Improvements” on page 17

Compatibility Considerations. Due to changes in the coding rules checker,
the number of coding rule violations may change when compared to previous
versions of the software.

Refer to the following sections for information on the specific changes.

New MISRA-C Rules Supported. The coding rules checker now supports
the following MISRA-C Rules:

• Rule 1.2

• Rule 3.1

• Rule 3.4

• Rule 6.2

• Rule 12.11

• Rule 14.1

• Rule 16.10

MISRA-C: Rule 1.1 Messages. Message reported for violations of MISRA-C:
Rule 1.1 has been improved.

MISRA-C: Rule 6.3 Improvements. Enforcement of MISRA-C Rule 6.3 has
been improved:

• no more violations when the plain char is used

• no more violations when basic types are used for bitfields declarations

In previous releases, the coding rules checker reported a violation on the
following code:

typedef struct TestData_tag {

16

Version 8.2 (R2011b) Polyspace® for C/C++ Products

unsigned int IsOK :1;
unsigned int IsCounterOK :1;
unsigned int IsNew :1;
unsigned int UnusedBytes :13;

} TestData;

void main(void) {

TestData c;

c.IsOK = 1;
}

In R2011b, this syntax is allowed.

MISRA-C: Rule 17.6 Improvements. Enforcement of MISRA-C: Rule 17.6
has been improved.

If the address of an object is assigned to another object that may persist after
the first object has ceased to exist, a runtime error may occur.

In previous releases, the coding rules checker did not detect a violation in
the following example:

extern int *vg;
void provide(short int a)
{

int v1;
v1 = a;
vg = &v1;

}

17

Polyspace® Release Notes

Changes to Analysis Options

New Options.
Option For more information

Functions to stub
(-functions-to-stub)

“Stubbing Specific Functions” on page 14

-main-generator-files-to-ignore “Specifying Functions Not Called by Generated
Main” on page 13

Maximum test time
-dynamic-execution-test-timeout

“Enhanced Automatic Orange Tester” on page
11

Maximum loop iterations
-dynamic-execution-loop-max-iteration

“Enhanced Automatic Orange Tester” on page
11

Number of automatic tests
-dynamic-execution-tests-number

“Enhanced Automatic Orange Tester” on page
11

Changes to Existing Options. The following options have been renamed in
R2011a.

New Name (R2011b) Previous Name (R2011a) Change

Stub complex functions Stub all functions GUI name only

Dialect support Keil/IAR support GUI name only

-automatic-orange-tester -prepare-automatic-test Command-line name and
enhanced functionality

Deprecated Options

• Launch code verification from beginning of (-from)

Note The -from option is still accepted when launching a verification
in batch mode.

18

Version 8.2 (R2011b) Polyspace® for C/C++ Products

Polyspace Server for C/C++ Product

Running Multiple Verifications Simultaneously
If you purchase more than one license for a Polyspace server, you can now
configure the server to run multiple verifications at the same time. This can
improve the performance of server verifications.

To configure your server to run multiple verifications, open the Remote
Launcher Manager, then set the Number of Polyspace verifications that
can run simultaneously on this server to the number of licenses you
have activated for your server.

For more information, see “Configuring Polyspace Server Software” in the
Polyspace Installation Guide.

Compatibility Considerations. If you configure your server to run more
than one verification simultaneously, the server will not be able to run
verifications using older versions of the software.

For example, if your server has both R2011a and R2011b software installed,
you cannot run a verification using the R2011a software.

Polyspace Metrics

Review Changes between Results of Successive Verifications. You
can specify a version of a project and review only the differences between
verification results of the specified version and the previous verification. See
“Review New Findings”.

File Modules with Quality Levels. If you have projects with two or more
file modules in the Polyspace verification environment, by default Polyspace
Metrics displays verification results using the same module structure.
However, Polyspace Metrics also allows you to create or delete file modules.
You can group files into a module and specify a quality level for the module,
which applies to all files within the module. This feature allows you to specify
different quality levels for your files in the review of verification results. See
“Creating a File Module and Specifying Quality Level”.

19

Polyspace® Release Notes

Enhanced Graphs and Charts. Polyspace Metrics displays enhanced
graphs and charts.

If you specify a range of project versions:

• On the Summary tab, Run-Time Defects are plotted as separate
categories, High, Medium, and Low.

• On the Run-Time Checks tab:

- Under Confirmed Defects, you see separate plots for the defect
categories, High, Medium, and Low.

- Under Run-Time Findings, you see separate plots for red checks, NTC
checks, and gray checks.

If you specify a single version of a project, Polyspace Metrics displays file
defect information, ordering the files according to the number of defects in
each file. Use the new # items field to specify the maximum number of
files for which information is displayed. See “Displaying Metrics for Single
Project Version”.

20

Version 6.2 (R2011b) Polyspace® for Ada Products

Version 6.2 (R2011b) Polyspace for Ada Products
This table summarizes what’s new in V6.2 (R2011b):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Includes fixes:
Polyspace Client for Ada Bug
Reports
Polyspace Server for Ada Bug
Reports

New features and changes introduced in this version are organized by product:

• “Polyspace® Client for Ada Product” on page 21

• “Polyspace® Server for Ada Product” on page 24

Polyspace Client for Ada Product

Review Orange Checks that are Potential Run-Time Errors
Previously, there were two modes in which you could review verification
results — manual and assistant. For the manual mode, you set the Assistant
slider to Off and the software displayed all orange checks (in addition to the
red and green checks) . With the assistant mode, there were three levels of
review — corresponding to settings 1, 2, and 3 of the Assistant slider. You
could specify the number of orange checks to display through the Assistant
Configuration tab in the Polyspace Preference dialog box.

Now, Polyspace allows you to review results at five different levels. You can
set the Review slider to 0, 1, 2, 3, or All:

• 0— Display red and gray checks. In addition, display orange checks that
are potential run-time errors. On the Polyspace Preference > Review
Configuration tab, you can specify the type of potential run-time errors
that you are interested in. You have the option of not displaying any orange
checks.

21

http://www.mathworks.com/support/bugreports/?product=PG&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PG&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PG&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2011b

Polyspace® Release Notes

• 1, 2, and 3— This functionality is unchanged. Display red, gray, and green
checks. In addition, display orange checks according to values specified on
the Polyspace Preference > Review Configuration tab.

• All— Display red, gray, green, and all orange checks.

The Assistant Configuration tab is renamed the Review Configuration
tab.

No Gray Checks in Unreachable Code
The only gray checks that Polyspace generates now are UNR checks for
unreachable branches of code. In addition, Polyspace generates the UNR check
only at the highest level of a branch. You no longer see nested UNR checks ,
that is, UNR checks in sub-branches.

In addition, the software displays two new metrics for the project in the
procedural entities view:

• unp— Number of unreachable procedures (functions) as a fraction of the
total number of procedures (functions)

• cov — Percentage of elementary operations in executable procedures
(functions) covered by verification

These metrics provide:

• A measure of the code coverage achieved by the Polyspace verification.

• Indicators about the validity of your Polyspace configuration. For example,
a large unp value and a low cov value may indicate an early red check or
missing function call.

See “Run-Time Checks Pane”.

22

Version 6.2 (R2011b) Polyspace® for Ada Products

Compatibility Considerations. Due to the removal of non-UNR gray checks
and nested UNR checks, verification results may change when compared to
previous versions of the software.

Global Variable Range Information
In the Variable Access pane, Polyspace displays range information for
read and write access operations on global variables within each source
file. Previously, the displayed value was the union of all access operations
on the global variable within a file. The software did not display range
information for individual operations. Now, for global variables that are
signed or unsigned integers, Polyspace also provides range information for
the individual access operations from which the union value is obtained.

See “Variable Access Pane”.

Read and Write Access in Dead Code
If a read or write access operation on a global variable lies within dead code,
then Polyspace colors the operation gray in the Variable Access pane. When
you examine verification results, you can hide these operations by clicking the

new filter button . See “Variable Access Pane”.

Run All Verifications in Project
You can have many verifications within a project, each verification being
associated with an active configuration. Previously, you could only run one
verification at a time from the Polyspace verification environment (PVE).

Now, if you select a project and click the button , Polyspace will
run all verifications in the project. See “Running a Verification”.

23

Polyspace® Release Notes

Green NIV check for Unchecked_Conversion Function
Previously, the software produced an orange NIV check for each call to an
instance of the Ada generic library function Unchecked_Conversion. Now by
default, the software produces a green NIV check for each call. If you want
to revert to the previous behavior, run your verification with the option -D
POLYSPACE_UNCHECKED_CONVERSION_NO_INIT.

Polyspace Server for Ada Product

Running Multiple Verifications Simultaneously
If you purchase more than one license for a Polyspace server, you can now
configure the server to run multiple verifications at the same time. This can
improve the performance of server verifications.

To configure your server to run multiple verifications, open the Remote
Launcher Manager, then set the Number of Polyspace verifications that
can run simultaneously on this server to the number of licenses you
have activated for your server.

For more information, see “Configuring Polyspace Server Software” in the
Polyspace Installation Guide.

Compatibility Considerations. If you configure your server to run more
than one verification simultaneously, the server will not be able to run
verifications using older versions of the software.

For example, if your server has both R2011a and R2011b software installed,
you cannot run a verification using the R2011a software.

Polyspace Metrics

Review Changes between Results of Successive Verifications. You
can specify a version of a project and review only the differences between
verification results of the specified version and the previous verification. See
“Review New Findings”.

24

Version 6.2 (R2011b) Polyspace® for Ada Products

File Modules with Quality Levels. If you have projects with two or more
file modules in the Polyspace verification environment, by default Polyspace
Metrics displays verification results using the same module structure.
However, Polyspace Metrics also allows you to create or delete file modules.
You can group files into a module and specify a quality level for the module,
which applies to all files within the module. This feature allows you to specify
different quality levels for your files in the review of verification results. See
“Creating a File Module and Specifying Quality Level”.

Enhanced Graphs and Charts. Polyspace Metrics displays enhanced
graphs and charts.

If you specify a range of project versions:

• On the Summary tab, Run-Time Defects are plotted as separate
categories, High, Medium, and Low.

• On the Run-Time Checks tab:

- Under Confirmed Defects, you see separate plots for the defect
categories, High, Medium, and Low.

- Under Run-Time Findings, you see separate plots for red checks, NTC
checks, and gray checks.

If you specify a single version of a project, Polyspace Metrics displays file
defect information, ordering the files according to the number of defects in
each file. Use the new # items field to specify the maximum number of
files for which information is displayed. See “Displaying Metrics for Single
Project Version”.

25

Polyspace® Release Notes

Version 5.8 (R2011b) Polyspace Model Link Products
This table summarizes what’s new in V5.8 (R2011b):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

No Includes fixes:
Polyspace Model Link SL Bug
Reports
Polyspace Model Link TL Bug
Reports
Polyspace UML Link RH Bug
Reports

New features and changes introduced in this version are organized by product:

• “Polyspace Model Link SL Product” on page 26

• “Polyspace UML Link RH Product” on page 28

Polyspace Model Link SL Product

Polyspace Verification Pane in Simulink Configuration Tree
The software provides a new pane Polyspace Model Link that allows you to
check your Simulink model settings and configure and start your Polyspace
verification within the Configuration Parameters dialog box.

After you create your Simulink model, from the model window, select
Tools > Polyspace > Options. The software opens the Configuration
Parameters dialog box with the new Polyspace Model Link pane displayed.

To remove the pane and Polyspace configuration information from your model,
select Tools > Polyspace > Remove Polyspace settings from model.

For more information, see the Polyspace Model Link Products User’s Guide .

26

http://www.mathworks.com/support/bugreports/?product=PG&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PG&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PH&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PH&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PI&release=R2011b
http://www.mathworks.com/support/bugreports/?product=PI&release=R2011b

Version 5.8 (R2011b) Polyspace® Model Link Products

Support for 16-Bit Cross Compiler
Previously, if you wanted to verify code generated for a 16-bit target processor,
you had to perform command line actions to specify header files for the 16-bit
compiler. Furthermore, the software could not automatically identify the
specified compiler from the Simulink model.

Now, through the Include (-include) and Include Folders (-I) options on
the Configuration pane, you can specify header files for your 16-bit compiler.
In addition, the software automatically identifies the compiler from the
Simulink model. If the compiler is 16-bit and you do not specify the necessary
header files, the software produces an error when you try to run a verification.

For more information, see “Specifying Header Files for Target Compiler” in
the Polyspace Model Link Products User’s Guide.

Enforcement of Modeling rules for Optimal Verification Results
Before you start a Polyspace verification, you can now check that your
Simulink model is configured to generate code that yields optimal verification
results: in the Configuration Parameters > Polyspace Model Link pane,
click Check Configuration. In addition, if you try to run a verification
without selecting the correct options, the software generates warnings or
errors. The software checks settings for the following model parameters .

Parameter Recommended Setting

MultiInstanceERTCode 'off'

MatFileLogging 'off'

InlineParams 'off'

ZeroExternalMemoryAtStartup 'off' when Configuration
Parameters > Polyspace
Model Link > Data Range
Management > Output is Global
assert

InitFltsAndDblsToZero 'on'

For more information, see “Run Polyspace Verification” in the Polyspace
Model Link Products User’s Guide.

27

Polyspace® Release Notes

Simulink Software Support
Added support for Simulink Version 7.8 (R2011b).

Polyspace UML Link RH Product

Product Rewritten in Java
To rectify previously encountered installation issues, the product has
been rewritten in Java™, supporting versions 7.4 and 7.5. See updated
documentation in the Polyspace UML Link™ RH User’s Guide.

28

Version 8.1 (R2011a) Polyspace® for C/C++ Products

Version 8.1 (R2011a) Polyspace for C/C++ Products
This table summarizes what’s new in V8.1 (R2011a):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Includes fixes:
Polyspace Client for C/C++
Bug Reports
Polyspace Server for C/C++
Bug Reports

New features and changes introduced in this version are organized by product:

• “Polyspace® Client for C/C++ Product” on page 29

• “Polyspace® Server for C/C++ Product” on page 45

Polyspace Client for C/C++ Product

Code Metrics (New for C++)
Code metric support, including cyclomatic number and other HIS metrics.

Polyspace verification can now generate metrics about code complexity, which
are based on the Hersteller Initiative Software (HIS) standard.

These metrics include:

• Project metrics – including number of recursions, number of include
headers, and number of files.

• File metrics – including comment density, and number of lines.

• Function metrics – including cyclomatic number, number of static paths,
number of calls, and Language scope.

When you run a verification with the -code-metrics option enabled, you can
view software quality metrics data in the Polyspace Metrics Web interface

29

http://www.mathworks.com/support/bugreports/?product=PC&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PC&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PC&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2011a

Polyspace® Release Notes

(Code Metrics view), or by running a Software Quality Objectives report
from the Polyspace verification environment.

The software generates numeric values or pass/fail results for various metrics.

For more information, see “Software Quality with Polyspace Metrics” in the
Polyspace Products for C++ User’s Guide.

Saving Polyspace Metrics Review
Previously, when you saved your project (Ctrl+S) after a review of results
from Polyspace Metrics, the software would save your comments and
justifications both locally and in the Polyspace Metrics repository.

Now, if you save your project (Ctrl+S), the software saves your review to a

local folder only. A new button is available on the Run-Time Checks
toolbar. If you click this button, the software saves your comments and
justifications to a local folder and the Polyspace Metrics repository.

This feature allows you to upload your review to the repository only when you
are satisfied that your review is, for example, correct and complete.

You can still configure your software to display the previous behavior.

For more information, see “Saving Review Comments and Justifications” in
the Polyspace Products for C/C++ User’s Guide.

30

Version 8.1 (R2011a) Polyspace® for C/C++ Products

Compilation Assistant
New Compilation Assistant to ease project configuration (cross-compiler
settings).

The Compilation Assistant allows you to check your project for compilation
problems before launching a verification. The Compilation Assistant then:

• Automatically detects pre-processing, compilation, and dialect options
required for your code (for example, -I and -D).

• Provides suggestions to solve compilation problems.

For more information, see “Checking for Compilation Problems” in the
Polyspace Products for C/C++ User’s Guide or Polyspace Products for C++
User’s Guide

31

Polyspace® Release Notes

Improved Search Function
Enhanced search functionality in the Run-Time Checks perspective allows
you to perform a search in several views at once (call hierarchy, variable
access, run-time checks and source code), and provides search results in a
single “Search” view.

For more information, see “Searching Results in Run-Time Checks
Perspective” in the Polyspace Products for C/C++ User’s Guide or Polyspace
Products for C++ User’s Guide.

Back to Source Function in Run-Time Checks Perspective
Improved navigation from the Run-Time Checks perspective to the source
code containing a check.

You can now right-click a check in your verification results, and open the
source file containing that check.

You can configure the software to open source files in either a text editor,
or your IDE.

32

Version 8.1 (R2011a) Polyspace® for C/C++ Products

For more information, see “Configuring Text and XML Editors” in the
Polyspace Products for C/C++ User’s Guide or Polyspace Products for C++
User’s Guide.

Structure Fields in Data Dictionary
Distinction of variable fields in the Data Dictionary provides a more accurate
Data Dictionary.

The enhanced Data Dictionary:

• Helps locate specific field accesses.

• Provides more information on fields (number of read/write accesses, field
type).

• Provides a hierarchical view of structured variables.

For more information, see “Variable Access Pane” in the Polyspace Products
for C/C++ User’s Guide or Polyspace Products for C++ User’s Guide.

Overflow Check Customization
New options allow you to customize how OVFL checks are handled during
verification. You can customize computation through overflow constructions,
control the presence of overflow checks, and the dynamic behavior in case of
a run-time error.

These options allow you to:

• Not generate OVFL checks on all computations (values are computed the
same way processors do).

• Not truncate the value after an OVFL check, and carry on with wrapped
values (OVFL check does not impact values during verification).

For more information, see “Detect overflows on (-scalar-overflows-checks)”
and “Overflows computation mode (-scalar-overflows-behavior)” in the
Polyspace Products for C/C++ Reference.

33

Polyspace® Release Notes

Compatibility Considerations. The option -detect-unsigned-overflows
(available in previous releases) has been renamed. To achieve
the same behavior as the previous option, specify the new option
-scalar-overflows-checks signed-and-unsigned.

When using the new options, your verification results may change when
compared to previous versions of the software. Some checks may change color,
and the Selectivity rate of your results may change.

Main Generator Improvements
Enhanced main-generator to improve verification results for generated code.

The new main-generator allows you greater control over the behavior of
the generated main. New options allow you to generate a main specifically
designed for cyclic programs, to support generated code and Model-Based
Design. This improves verification results at the subsystem level.

The generated main now has the following behavior:

1 It initializes any variables identified by the option -variables
written-before-loop.

2 It calls any functions specified by the option
-functions-called-before-loop. This could be considered an
initialization function.

3 It initializes any variables identified by the option -variables
written-in-loop.

4 It calls any functions specified by the option -functions-called-in-loop.

5 It calls any functions specified by the option
-functions-called-after-loop. This could be a terminate function for
a cyclic program.

For more information, see “Automatically Generating a Main” in the Polyspace
Products for C/C++ User’s Guide.

34

Version 8.1 (R2011a) Polyspace® for C/C++ Products

Compatibility Considerations. Due to precision improvements, verification
results may change when compared to previous versions of the software. Some
checks may change color, and the Selectivity rate of your results may change.

In addition, several Analysis options have been renamed to support the new
main generator.

Previous Name (R2010b) New Name (R2011a)

-main-generator-writes-variables -variables-written-before-loop

-function-called-before-main -function-called-before-loop

-main-generator-calls -functions-called-in-loop

If you have any scripts that use the old options, update them to reflect the
new names.

Verification Time Limit
You can now specify a time limit for verifications using the -timeout option.
If the verification does not complete within the specified time, the verification
fails.

For more information, see “Verification time limit (-timeout)” in the Polyspace
Products for C/C++ Reference or Polyspace Products for C++ Reference.

Continue Verification with Compile Errors
You can now specify that a verification continues even if some source files do
not compile, using the option -continue-with-compile-error.

Functions that are used but not specified are stubbed automatically.

If a source file contains global variables, you may also need to select the option
-allow-undef-variables to enable verification.

For more information, see “Continue with compile error
(-continue-with-compile-error)” in the Polyspace Products for
C/C++ Reference or Polyspace Products for C++ Reference.

35

Polyspace® Release Notes

Precision Improvements
Improved precision on arrays and functions, resulting in less orange checks.

The precision improvements effect:

• NIV, NIVL, NIP, and IRV checks

• array cells

• boolean decision graphs

• various other constructs

Compatibility Considerations. Verification results may change when
compared to previous versions of the software. Some checks may change color,
and the Selectivity rate of your results may change.

Permissive Mode Set By Default
Permissive verification mode is now set by default for new projects. This
reduces the number of compilation errors for verifications launched with
default settings.

The following options are now set by default:

• -discard-asm

• -allow-non-in-bitfields

• -permissive-link

• -allow-undef-variables

• -allow-unnamed-fields

• -allow-negative-operand-in-shift

• -allow-language-extensions

If you want to use stricter compilation settings, you can select them in the
project configuration.

36

Version 8.1 (R2011a) Polyspace® for C/C++ Products

Compatibility Considerations. When using the default options, your
results may change when compared to previous versions of the software. Some
checks may change color, and the Selectivity rate of your results may change.

Default Project Location
On Windows systems, the default project location has changed.

The default project location is now in My Documents. Previously, the default
location was defined in the user profile.

Variable Range Inconsistency between Variable Access Pane
and Tooltips
The range given for a variable in the Variable Access Pane (Variables View)
can differ from the range given by tooltips on the reads of a variable in the
Source code view. The range provided by the tooltip will be wider than the
range given in the Variables View.

This difference is due to imprecision in the tooltip. The Variables View
provides the correct range for the variable.

For example:

• Variables View states that variable X is in range [0..4000]

• Tooltip on a read of X states that the range is [0,7000].

In this case, [0..4000] is the correct range. The tooltip range is caused by
imprecision that may be fixed in future releases.

Visual Studio Integration
New Visual Studio® import tool allows you to automatically extract some
Polyspace settings from a Visual Studio project file.

This tool can help you:

• Locate source files, include folders and preprocessing directives

• Set some Polyspace Visual Studio specific options

37

Polyspace® Release Notes

For more information, see “Importing Visual Studio Project Information into
Polyspace Project” in the Polyspace Products for C++ User’s Guide.

Product Name Change in Files and Folders
The Polyspace product name has changed from “PolySpace” to “Polyspace”
in R2011a. This change impacts the name of all files and folders created
by the software.

For example:

• PolySpace-Doc folder has changed to Polyspace-Doc

• PolySpace_xxxx.log file has changed to Polyspace_xxxx.log

Compatibility Considerations. If you have existing folders that use the
previous product name (for example, PolySpace/PolySpace_Common) the
R2011a installation will continue to use these existing folders. However, any
files or folders created during or after installation will use the new name.

If you have any shortcuts or scripts that are case-sensitive, you should update
them to use the correct name.

Visual Studio Support
Added support for Microsoft® Visual Studio 2010.

For more information, see the Polyspace Installation Guide.

Eclipse IDE Support
Added support for Version 3.6 of the Eclipse IDE.

For more information, see the Polyspace Installation Guide.

License Manager Support
The License Manager for Polyspace products has been upgraded to FLEXnet®

11.9.

You may need to upgrade your FLEXnet server and daemon.

38

Version 8.1 (R2011a) Polyspace® for C/C++ Products

For more information, see “Polyspace License Installation” in the Polyspace
Installation Guide.

Changes to Verification Results

• “Compatibility Considerations” on page 39

• “Certain COR Checks Changing to OVFL ” on page 39

• “COR Checks on Function Pointer” on page 40

• “NIV Check on Local Volatile Variables” on page 40

• “OVFL Checks on Assignment” on page 40

• “Precision Improvements for NIV Checks” on page 41

• “Precision Improvements on Arrays and Functions” on page 41

• “Compilation Errors for Classes without Constructors” on page 41

Compatibility Considerations. Verification results may change when
compared to previous versions of the software. Some checks may change color,
and the Selectivity rate of your results may change.

Refer to the following sections for information on the specific changes.

Certain COR Checks Changing to OVFL . In previous releases, certain
types of overflow errors were reported as COR checks instead of OVFL checks.
For example:

typedef long int32;
extern int32 random(void);

int32 func(int32 a, int32 b)
{
int32 res = 0;
if (random()) {
res = a/b; // COR changing to OVFL in R2011a
}
return res;
}

39

Polyspace® Release Notes

These checks are now reported as OVFL, which will impact check statistics
when compared to previous releases.

COR Checks on Function Pointer. In previous releases, verification
reported a COR check on function pointer when the parameter type of
function pointer is void*. For example:

typedef void (*func)(void*);

void foo(int *p) { *p=1; }

void bar(void)
{
int a;
func A = foo;
A(&a);
}

In R2011a, verification considers that type void * is compatible with all
other pointer types.

This may result in changes to the color of COR checks. The Call graph may
also been impacted. It can also have an impact on performance and precision
(more calls considered).

NIV Check on Local Volatile Variables. The behavior of NIV checks for
local volatile variables has changed.

In previous releases, the NIV for a local volatile variable was always orange.
In R2011a, verification allows local volatile variables to behave just like other
variables – if they are initialized in the code, the NIV is green.

Polyspace verification considers that the hardware can bring a value (so NIV
cannot be red) but will not de-initialize. Therefore, if the variable is initialized
by the code, it is green.

OVFL Checks on Assignment. By default, verification no longer reports
OVFL checks on assignment, for example:

40

Version 8.1 (R2011a) Polyspace® for C/C++ Products

uc = ~uc;

The total number of checks in your results may change when compared to
previous releases.

If you want the verification to report these types of checks, you can use the
option -detect-overflows-on-operator-not to retain the previous behavior.

Precision Improvements for NIV Checks. Improved precision on NIV,
NIVL, NIP, and IRV checks.

Precision Improvements on Arrays and Functions. Improved precision
on arrays and functions.

Compilation Errors for Classes without Constructors. In previous
releases, a compilation error occurs when you use the options -unit-by-unit
or -class-analyzer all on source code containing classes with no user
defined or compiler generated constructor.

In R2011a, this behavior changes as follows:

• No compilation error occurs.

• When using the options -unit-by-unit or -class-analyzer all, if a
class has no constructor, all of its members are randomly initialized to
the full range.

• When using the option -class-analyzer custom-class-list, if a class
among the custom-class-list has no constructor, the verification does not
initialize the class members in order to highlight NIV/NIP on accessing the
class members (which mean that this class instance can never be correctly
constructed).

• A warning is displayed in the log file.

Changes to Coding Rules Checker Results

• “Compatibility Considerations” on page 42

• “MISRA C Rule 12.1 – Parentheses for Operand of Unary Operator. ” on
page 42

41

Polyspace® Release Notes

• “Single Rule Violation Reported Multiple Times” on page 42

Compatibility Considerations. Due to changes in the coding rules checker,
the number of coding rule violations may change when compared to previous
versions of the software.

Refer to the following sections for information on the specific changes.

MISRA C Rule 12.1 – Parentheses for Operand of Unary Operator.
. In previous releases, the coding rules checker could incorrectly report a
violation of MIRSA C Rule 12.1 for the operand of a unary operator. For
example:

Y1 = (U1 * U2) -0.366; // Passes 12.1
Y2 = (-1 * (0.366)) + (U1 * U2); // Fails 12.1
Y3 = -0.366 + (U1 * U2); // Fails 12.1
4 = 0.366 + (U1 * U2); // Passes 12.1

The MISRA rule states that parentheses are not required for the operand
of a unary operator.

The number of violations of Rule 12.1 may decrease when compared to
previous releases.

Single Rule Violation Reported Multiple Times. In previous releases,
Polyspace Metrics could report more than one violation of a single coding rule
in the same location. This occurred when the message of a rule violation
was modified, and the same results were uploaded to the Metrics database
multiple times.

In R2011a, messages for rule violations that have the same ID and the same
location are merged into a single message of only one rule violation

Therefore, the total number of rule violations may be lower in R2011a than
in previous releases.

42

Version 8.1 (R2011a) Polyspace® for C/C++ Products

Changes to Analysis Options

New Options.
Option For more information

Variables written in loop
(-variables-written-in-loop)

“Main Generator Improvements” on
page 34

Functions called after loop
(-functions-called-after-loop)

“Main Generator Improvements” on
page 34

Overflow computation mode
(-scalar overflows-behavior)

“Overflow Check Customization” on
page 33

Continue with compile error
(-continue-with-compile-error)

“Continue Verification with Compile
Errors” on page 35

Verification time limit
(-timeout)

“Verification Time Limit” on page 35

Changes to Existing Options. The following options have been renamed in
R2011a.

New Name (R2011a) Previous Name (R2010b) Change

Target operating system Operating system target
for PolySpace stubs

GUI name only

Ignore assembly code Discard Assembly code GUI name only

Allow non int types for
bitfields

Allow non-ANSI/ISO C-90
types of bitfields

GUI name only

Allow undefined global
variables

Continue even with
undefined global variables

GUI name only

Ignore overflowing
computations on constants

Permits overflowing
computations on constants

GUI name only

Allow anonymous
unions/structure fields

Allow un-named
Unions/Structures

GUI name only

Allow negative operand for
left shifts

Do not check the sign of
operand in left shifts

GUI name only

43

Polyspace® Release Notes

New Name (R2011a) Previous Name (R2010b) Change

Ignore missing header files No error on missing header
file

GUI name only

Variables written before
loop

(-variables-written-
before-loop)

Write accesses to global
variables

(-main-generator-
writes-variables)

GUI and command-line name

See “Main Generator
Improvements” on page
34

Functions called before
loop

(-functions-called-
before-loop)

First functions to call

(-function-called-
before-main)

GUI and command-line name

See “Main Generator
Improvements” on page
34

Functions called in loop

(-functions-called-in-loop)

Function calls

(-main-generator-calls)

GUI and command-line name

See “Main Generator
Improvements” on page
34

Detect overflows on

(-scalar-overflows-checks)

Detect overflows on
unsigned integers

(-detect-unsigned-
overflows)

Functionality change

GUI and command line name

See “Overflow Check
Customization” on page
33

In addition, the default settings for some Permissive options have changed.

Deprecated Options. None.

44

Version 8.1 (R2011a) Polyspace® for C/C++ Products

Polyspace Server for C/C++ Product

Code Metrics (New for C++)
Code metric support, including cyclomatic number and other HIS metrics.

Polyspace verification can now generate metrics about code complexity, which
are based on the Hersteller Initiative Software (HIS) standard.

These metrics include:

• Project metrics – including number of recursions, number of include
headers, and number of files.

• File metrics – including comment density, and number of lines.

• Function metrics – including cyclomatic number, number of static paths,
number of calls, and Language scope.

When you run a verification with the -code-metrics option enabled, you can
view software quality metrics data in the Polyspace Metrics Web interface
(Code Metrics view), or by running a Software Quality Objectives report
from the Polyspace verification environment.

The software generates numeric values or pass/fail results for various metrics.

For more information, see “Software Quality with Polyspace Metrics”in the
Polyspace Products for C++ User’s Guide.

45

Polyspace® Release Notes

Saving Polyspace Metrics Review
Previously, when you saved your project (Ctrl+S) after a review of results
from Polyspace Metrics, the software would save your comments and
justifications both locally and in the Polyspace Metrics repository.

Now, if you save your project (Ctrl+S), the software saves your review to a

local folder only. A new button is available on the Run-Time Checks
toolbar. If you click this button, the software saves your comments and
justifications to a local folder and the Polyspace Metrics repository.

This feature allows you to upload your review to the repository only when you
are satisfied that your review is, for example, correct and complete.

You can still configure your software to display the previous behavior.

For more information, see “Saving Review Comments and Justifications” in
the Polyspace Products for C/C++ User’s Guide.

Automatic Comment Import for Server Verifications
When you download results from the Polyspace server, the software now
automatically imports any comments from results in the destination folder
into the downloaded results (except for verifications using the option
-add-to-results-repository).

As a result of this change, you can now download intermediate results for a
verification running on the Polyspace server, and add or edit comments on
those results. When you later download the final results, your comments
are preserved.

You can also download and comment on a single unit of a unit-by-unit
verification, even if other units are still pending in the server queue. When
you download the final results (which overwrites the earlier results), your
comments are preserved.

License Manager Support
The License Manager for Polyspace products has been upgraded to FLEXnet
11.9.

46

Version 8.1 (R2011a) Polyspace® for C/C++ Products

You may need to upgrade your FLEXnet server and daemon.

For more information, see “Polyspace License Installation” in the Polyspace
Installation Guide.

47

Polyspace® Release Notes

Version 6.1 (R2011a) Polyspace for Ada Products
This table summarizes what’s new in V6.1 (R2011a):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Includes fixes:
Polyspace Client for Ada Bug
Reports
Polyspace Server for Ada Bug
Reports

New features and changes introduced in this version are organized by product:

• “Polyspace® Client for Ada Product” on page 48

• “Polyspace® Server for Ada Product” on page 56

Polyspace Client for Ada Product

Code Metrics
Polyspace Metrics now generates Ada code metrics, giving you the number of:

• Protected shared variables

• Unprotected shared variables

• Files

• Lines of code

• Packages

• Packages that appear in with statements

• Subprograms that appear in with statements

You can view the metrics by:

48

http://www.mathworks.com/support/bugreports/?product=PG&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PG&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PG&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2011a

Version 6.1 (R2011a) Polyspace® for Ada Products

• Using a Web browser to access the Code Metrics view of your project
in Polyspace Metrics

• Examining the XML file that the software generates

For more information, see “Setting Up Verification to Generate Metrics” and
“Review Code Metrics” in the Polyspace Products for Ada User’s Guide.

Saving Polyspace Metrics Review
Previously, when you saved your project (Ctrl+S) after a review of results
from Polyspace Metrics, the software would save your comments and
justifications both locally and in the Polyspace Metrics repository.

Now, if you save your project (Ctrl+S), the software saves your review to a

local folder only. A new button is available on the Run-Time Checks
toolbar. If you click this button, the software saves your comments and
justifications to a local folder and the Polyspace Metrics repository.

This feature allows you to upload your review to the repository only when you
are satisfied that your review is, for example, correct and complete.

You can still configure your software to display the previous behavior.

For more information, see “Saving Review Comments and Justifications” in
the Polyspace Products for Ada User’s Guide.

Support for Rational and Aonix Compilers
The software now provides support for the IBM® Rational® Apex and Aonix®

compilers. For more information, see “Operating system target for Standard
Libraries compatibility” in the Polyspace Products for Ada Reference.

Multi-Core Support
On multi-core computers, you can reduce verification time by specifying
the use of core processors simultaneously to perform the verification. The
software provides a new command line option max-processes, which uses a
default value of 4. You can specify any value between 1 and 128. For more
information, see “Number of processes for multiple CPU core systems” in the
Polyspace Products for Ada Reference.

49

Polyspace® Release Notes

Generated Main with Explicit Tasks and Accept Statements
If you select the option Generate a main and there are explicit tasks in
the source code, then task bodies are verified like subprograms and accept
statements are not executed. After verification, code associated with the
accept statements is gray. For more information, see “Generate a main” in
the Polyspace Products for Ada Reference.

Compatibility Considerations. Previously, if there were explicit tasks and
accept statements in the source code, a verification run could have generated
red, green, or orange checks for code within the accept statements. Now,
verification colors the code within these accept statements gray.

Enhancements in Run-Time Checks Perspective
Within the source code view, you can investigate checks with tooltips that
provide range information about variables.

In addition, when you click a check, the software provides information about
the check in the Review Details pane.

For more information, see “Using Range Information in Run-Time Checks
Perspective” and “Selecting a Check to Review” in the Polyspace Products
for Ada User’s Guide.

Compatibility Considerations . Because of these enhancements, the IPT
and VOA checks are no longer required, and the software does not generate
these checks anymore.

UOVFL and UNFL Checks Removed
The software no longer generates UOVFL and UNFL checks, but generates
OVFL checks in place of these checks.

Compatibility Considerations. Due to the replacement of UOVFL and
UNFL checks by the OVFL check, the number of green checks may decrease
when compared with previous versions of the software. For example, a
combination of an orange OVFL and a green UNFL generated by a previous
version may be replaced by a single orange OVFL.

50

Version 6.1 (R2011a) Polyspace® for Ada Products

NIV Checks for Universal Constants
The software now generates NIV checks for read operations on universal
constants. If the constants are used in your code, the NIV checks are green. If
the constants are in unreacheable code, the NIV checks are gray.

Compatibility Considerations. This enhancement may change the check
metrics and selectivity of the verification. The number of green and gray
checks may be higher compared to the number generated by previous versions
of the software.

Variable Range Inconsistency between Variable Access Pane
and Tooltips
The range given for a variable in the Variable Access Pane (Variables View)
can differ from the range given by tooltips on the reads of a variable in the
Source code view. The range provided by the tooltip will be wider than the
range given in the Variables View.

This difference is due to imprecision in the tooltip. The Variables View
provides the correct range for the variable.

For example:

• Variables View states that variable X is in range [0..4000]

• Tooltip on a read of X states that the range is [0,7000].

In this case, [0..4000] is the correct range. The tooltip range is caused by
imprecision that may be fixed in future releases.

Verification Time Limit
You can now specify a time limit for verifications using the -timeout option.
If the verification does not complete within the specified time, the verification
fails.

For more information, see “Verification Time Limit” in the Polyspace Products
for Ada Reference.

51

Polyspace® Release Notes

Automatic Addition of Specifications for Selected Source Files
When launching a verification from the Eclipse IDE or the Polyspace
Verification Environment, the software automatically searches for the
package specifications associated with the selected source files, and adds
them to the set of sources to verify.

As a result, the verification may contain more source files than you select.

Stubbed Tasks
Programs with stubbed tasks, such as those using Ada rendezvous, previously
caused compilation errors. These programs can now be verified.

Scaling Issue for Large Applications with Nested
Structures/Arrays
With R2011a, you may experience scaling problems for large applications
that manipulate strongly nested structures or arrays. When verifying such
applications, the verification may fail during the “Software Safety Analysis
Level 0” phase. No verification results are generated, although the data
dictionaries (Variable View and Call-Graph View) are accessible.

With previous releases, such applications could be verified, but the verification
required several days to complete, and produced results with very low
selectivity.

If you experience this problem, MathWorks recommends performing a
unit-by-unit verification. For more information, see “Running Verification
Unit-by-Unit” in the Polyspace Products for Ada User’s Guide.

Compatibility Considerations. Verification may fail for code that was
previously verified with an earlier version of the product.

Product Name Change in Files and Folders
The Polyspace product name has changed from “PolySpace” to “Polyspace”
in R2011a. This change impacts the name of all files and folders created
by the software.

For example:

52

Version 6.1 (R2011a) Polyspace® for Ada Products

• PolySpace-Doc folder has changed to Polyspace-Doc

• PolySpace_xxxx.log file has changed to Polyspace_xxxx.log

Compatibility Considerations. If you have existing folders that use the
previous product name (for example, PolySpace/PolySpace_Common) the
R2011a installation will continue to use these existing folders. However, any
files or folders created during or after installation will use the new name.

If you have any shortcuts or scripts that are case-sensitive, you should update
them to use the correct name.

License Manager Support
The License Manager for Polyspace products has been upgraded to FLEXnet
11.9.

You may need to upgrade your FLEXnet server and daemon.

For more information, see “Polyspace License Installation” in the Polyspace
Installation Guide.

Changes to Verification Results

• “Compatibility Considerations” on page 54

• “Write Access in Data Table with Main Generator and Protected Objects”
on page 54

• “NIV for Variables Initialized at Declaration” on page 54

• “Range Error with greenhills OS Target” on page 54

• “UOVFL and UNFL Checks Removed” on page 55

• “NIV Checks for Universal Constants” on page 55

• “Constants Defined in Package System” on page 55

• “Initialization of Variables Declared and Assigned in Specs” on page 55

• “Parameterless Protected Procedure as Entry Point” on page 56

53

Polyspace® Release Notes

Compatibility Considerations. Verification results may change when
compared to previous versions of the software. Some checks may change color,
and the Selectivity rate of your results may change.

Refer to the following sections for information on the specific changes.

Write Access in Data Table with Main Generator and Protected
Objects. In previous releases, when using the -main-generator option, an
incorrect write access could appear in the data-table when entries of protected
objects were called.

In R2011a, the data-table no longer includes locations with critical section
names.

There may be less write accesses with protected objects that have defined
entries when you use the option -main-generator.

NIV for Variables Initialized at Declaration. In previous releases, there
is no NIV check when a variable is initialized at the declaration.

In R2011a, verification always puts NIV checks on variables and constants.
OVFL checks are not put on constants.

The total number of checks may change when compared with previous
releases.

Range Error with greenhills OS Target. In previous releases, verification
could report a false red when using “Ada.interrupts.Interrupt_ID” in
source code designed for the greenhills compiler.

In R2011a, when you use the type Ada.interrupts.Interrupt_ID, and set
the -OS-target to greenhills, the bounds of the type Interrupt_ID have
changed.

Verification results may change when compared to previous versions of the
software. Some checks may change color, and the Selectivity rate of your
results may change.

54

Version 6.1 (R2011a) Polyspace® for Ada Products

UOVFL and UNFL Checks Removed. The software no longer generates
UOVFL and UNFL checks, but generates OVFL checks in place of these
checks.

The number of checks may decrease compared to previous versions of the
software.

NIV Checks for Universal Constants. The software now generates NIV
checks for read operations on universal constants. If the constants are used
in your code, the NIV checks are green. If the constants are in unreacheable
code, the NIV checks are gray.

Verification results may change when compared to previous versions of the
software. The number of green and gray checks may be higher compared to
the number generated by previous versions of the software.

Constants Defined in Package System. In previous releases, constants
defined in package system were ignored.

For example:

Max_Binary_Modulus : constant := 16#100000000#;
Max_Nonbinary_Modulus : constant := 16#FFFFFFFF#;

In R2011a, values of constants defined in the package system that are used in
the program to be verified are taken into account for the verification. This
may impact the results.

Initialization of Variables Declared and Assigned in Specs. In previous
releases, verification could incorrectly report a red ZDV check for a variable of
a type with default values, when the variable is global.

In R2011a, when using the option -main-generator, components with initial
values of global variables of composite types that are not initialized are
considered full range.

Verification results may change when compared to previous versions of the
software. Some checks may change color, and the Selectivity rate of your
results may change.

55

Polyspace® Release Notes

Parameterless Protected Procedure as Entry Point. In previous releases,
when a parameterless protected procedure is used as an entry point via the
option -entry-points, the verification fails.

In R2011a, parameterless protected procedures applied to a global object are
now accepted as values of the option -entry-points.

Changes to Analysis Options

New Options.

• Calculate code metrics (-code metrics) – See “Code Metrics” on page
48.

• Verification time limit (-timeout) – See “Verification Time Limit” on
page 51.

• Number of processes for multiple CPU core systems
(-max-processes) – See “Multi-Core Support” on page 49.

• Less range information (-less-range-information) – See
“Enhancements in Run-Time Checks Perspective” on page 50.

Changes to Existing Options. None.

Deprecated Options. None.

Polyspace Server for Ada Product

Code Metrics
Polyspace Metrics now generates Ada code metrics, giving you the number of:

• Protected shared variables

• Unprotected shared variables

• Files

• Lines of code

• Packages

56

Version 6.1 (R2011a) Polyspace® for Ada Products

• Packages that appear in with statements

• Subprograms that appear in with statements

You can view the metrics by:

• Using a Web browser to access the Code Metrics view of your project
in Polyspace Metrics

• Examining the XML file that the software generates

For more information, see “Setting Up Verification to Generate Metrics” and
“Review Code Metrics” in the Polyspace Products for Ada User’s Guide.

Saving Polyspace Metrics Review
Previously, when you saved your project (Ctrl+S) after a review of results
from Polyspace Metrics, the software would save your comments and
justifications both locally and in the Polyspace Metrics repository.

Now, if you save your project (Ctrl+S), the software saves your review to a

local folder only. A new button is available on the Run-Time Checks
toolbar. If you click this button, the software saves your comments and
justifications to a local folder and the Polyspace Metrics repository.

This feature allows you to upload your review to the repository only when you
are satisfied that your review is, for example, correct and complete.

You can still configure your software to display the previous behavior.

For more information, see “Saving Review Comments and Justifications” in
the Polyspace Products for Ada User’s Guide.

Multi-Core Support
On multi-core computers, you can reduce verification time by specifying
the use of core processors simultaneously to perform the verification. The
software provides a new command line option –max-processes, which uses a
default value of 4. You can specify any value between 1 and 128.

57

Polyspace® Release Notes

For more information, see “Number of processes for multiple CPU core
systems” in the Polyspace Products for Ada Reference.

Generated Main with Explicit Tasks and Accept Statements
If you select the option Generate a main and there are explicit tasks in
the source code, then task bodies are verified like subprograms and accept
statements are not executed. After verification, code associated with the
accept statements is gray. For more information, see “Generate a main” in
the Polyspace Products for Ada Reference.

Compatibility Considerations. Previously, if there were explicit tasks and
accept statements in the source code, a verification run could have generated
red, green, or orange checks for code within the accept statements. Now,
verification colors the code within these accept statements gray.

Automatic Comment Import for Server Verifications
When you download results from the Polyspace server, the software now
automatically imports any comments from results in the destination folder
into the downloaded results (except for verifications using the option
-add-to-results-repository).

As a result of this change, you can now download intermediate results for a
verification running on the Polyspace server, and add or edit comments on
those results. When you later download the final results, your comments
are preserved.

You can also download and comment on a single unit of a unit-by-unit
verification, even if other units are still pending in the server queue. When
you download the final results (which overwrites the earlier results), your
comments are preserved.

License Manager Support
The License Manager for Polyspace products has been upgraded to FLEXnet
11.9.

You may need to upgrade your FLEXnet server and daemon.

58

Version 6.1 (R2011a) Polyspace® for Ada Products

For more information, see “Polyspace License Installation” in the Polyspace
Installation Guide.

59

Polyspace® Release Notes

Version 5.7 (R2011a) Polyspace Model Link Products
This table summarizes what’s new in V5.7 (R2011a):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Includes fixes:
Polyspace Model Link SL Bug
Reports
Polyspace Model Link TL Bug
Reports
Polyspace UML Link RH Bug
Reports

New features and changes introduced in this version are organized by product:

Polyspace Model Link SL Product

Overflow Check Customization
New options allow you to customize how OVFL checks are handled during
verification. You can customize computation through overflow constructions,
control the presence of overflow checks, and the dynamic behavior in case of
a run-time error.

These options allow you to:

• Not generate OVFL checks on all computations (values are computed the
same way processors do).

• Not truncate the value after an OVFL check, and carry on with wrapped
values (OVFL check does not impact values during verification).

For more information, see “Detect overflows on (-scalar-overflows-checks)”
and “Overflows computation mode (-scalar-overflows-behavior)” in the
Polyspace Products for C/C++ Reference.

60

http://www.mathworks.com/support/bugreports/?product=PG&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PG&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PH&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PH&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PI&release=R2011a
http://www.mathworks.com/support/bugreports/?product=PI&release=R2011a

Version 5.7 (R2011a) Polyspace® Model Link Products

Compatibility Considerations. When using the new options, verification
results may change when compared to previous versions of the software. Some
checks may change color, and the Selectivity rate of your results may change.

Main Generator Improvements
Enhanced main-generator to improve verification results for generated code.

The new main-generator is specifically designed for cyclic programs, to
support generated code and Model-Based Design. The main generator
considers the scope of:

• _step

• initialization functions

• calibrations

This improves verification results at the subsystem level.

Sample main:

initialize_parameters
call_initialization_functions
while (1){

initialize_inputs
call_step_functions

}
call_terminate_functions

For more information, see “Main Generation for Model Verification” in the
Polyspace Model Link Products User’s Guide, and “Automatically Generating
a Main” in the Polyspace Products for C/C++ User’s Guide.

Compatibility Considerations. Due to precision improvements, verification
results may change when compared to previous versions of the software. Some
checks may change color, and the Selectivity rate of your results may change.

61

Polyspace® Release Notes

Data Range Management
Polyspace Model Link™ SL software now allows you to run different modes
of verification, such as robustness vs. contextual, by specifying how the
verification handles data ranges on model inputs, outputs, and tunable
parameters within the model

Note The new Data Range Management settings require Simulink Version
7.4 (R2009b) or later.

For more information, see “Configuring Data Range Settings”in the Polyspace
Model Link Products User’s Guide.

Block Annotation
You can now annotate blocks in your Simulink model to justify known
run-time checks or coding-rule violations.

Annotating a block allows you to highlight and categorize checks identified in
previous verifications, so that you can focus on new checks when reviewing
your verification results.

The Polyspace Run-Time Checks perspective displays the information that
you provide, and marks the checks as Justified.

For more information, see “Annotating Blocks to Justify Known Checks or
Coding-Rules Violations”in the Polyspace Model Link Products User’s Guide.

Precision Improvements
Precision enhancements on arrays and functions provide improved Selectivity
(less orange) in your verification results.

Compatibility Considerations. Verification results may change when
compared to previous versions of the software. Some checks may change color,
and the Selectivity rate of your results may change.

62

Version 5.7 (R2011a) Polyspace® Model Link Products

Simulink Software Support
Added support for Simulink Version 7.7 (R2011a).

63

Polyspace® Release Notes

Version 8.0 (R2010b) Polyspace for C/C++ Products
This table summarizes what’s new in V8.0 (R2010b):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Includes fixes:
Polyspace Client for C/C++
Bug Reports
Polyspace Server for C/C++
Bug Reports

New features and changes introduced in this version are organized by product:

• “Polyspace® Client for C/C++ Product” on page 64

• “Polyspace® Server for C/C++ Product” on page 88

Polyspace Client for C/C++ Product

Polyspace Graphical User Interface
Redesigned Polyspace graphical user interface replaces the Launcher
and Viewer modules with a single, unified interface called the Polyspace
verification environment (PVE).

You use the Polyspace verification environment to create Polyspace projects,
launch verifications, and review verification results. The new interface also
enables you to provide comments in the source code or in the results.

The Polyspace verification environment consists of three perspectives:

• “Project Manager Perspective” on page 65

• “Coding Rules Perspective” on page 66

• “Run-Time Checks Perspective” on page 67

64

http://www.mathworks.com/support/bugreports/?product=PC&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PC&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PC&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2010b

Version 8.0 (R2010b) Polyspace® for C/C++ Products

Project Manager Perspective. The Project Manager perspective allows you
to create projects, set verification parameters, and launch verifications.

��������	��
�����
����������
�

�	������������������

������������������

�	�����

�
�������	�����

For information on using the Project Manager perspective, see “Setting Up
a Verification Project” in the Polyspace Products for C/C++ User’s Guide or
Polyspace Products for C++ User’s Guide.

65

Polyspace® Release Notes

Coding Rules Perspective. The Coding Rules perspective allows you to
review results from the Polyspace coding rules checker, to ensure compliance
with established coding standards.

For information on using the Coding Rules perspective, see “Checking Coding
Rules” in the Polyspace Products for C/C++ User’s Guide or “Checking Coding
Rules” in the Polyspace Products for C++ User’s Guide.

66

Version 8.0 (R2010b) Polyspace® for C/C++ Products

Run-Time Checks Perspective. The Run-Time Checks perspective allows
you to review verification results, comment individual checks, and track
review progress.

���������
�����������������
���

������
����

�
��
����
����

�
��
���
������

���� �!�
����"�

For information on using the Run-Time Checks perspective, see “Reviewing
Verification Results” in the Polyspace Products for C/C++ User’s Guide or
Polyspace Products for C++ User’s Guide.

67

Polyspace® Release Notes

Permissiveness on File and Folder Names
Polyspace software now allows space characters in the names of Projects,
source files, and folders, as well as in option arguments.

In addition, multiple source files with the same name are now allowed.

Note Non-ASCII characters in file names are not supported.

MISRA C++ Coding Rules Support
Enhanced MISRA C++ checker supports all statically enforceable MISRA-C++
coding rules.

Polyspace software can now check all possible C++ programming rules defined
by the MISRA® C++ coding standard. The Polyspace MISRA C++ checker
provides messages when MISRA C++ rules are not respected. Most messages
are reported during the compile phase of a verification.

Note The Polyspace MISRA C++ checker is based on MISRA C++:2008 –
“Guidelines for the use of the C++ language in critical systems." For more
information on these coding standards, see http://www.misra-cpp.com.

For more information, see “Checking Coding Rules”, in the Polyspace Products
for C++ User’s Guide.

Coding Rules Checker Enhancements
The coding rules checker for MISRA C, MISRA C++, and JSF C++ coding
standards has been enhanced as follows:

• You can now set all supported coding rules to any state: Error, Warning,
or Off.

• The Files and Folders to ignore (-includes-to-ignore) option now
supports the keyword “all,” allowing you to exclude all included files from
coding rules checking.

68

http://www.misra-cpp.com/

Version 8.0 (R2010b) Polyspace® for C/C++ Products

• The new Coding Rules perspective allows you to review and categorize
coding rule violations, and provide comments in the results to justify
violations.

• The MISRA C checker now allows you to automatically select two
recommended subsets of coding rules (SQO-subset1, and SQO-subset2), in
addition to creating a custom subset.

For more information, see “Checking Coding Rules” in the Polyspace Products
for C/C++ User’s Guide or “Checking Coding Rules”, in the Polyspace Products
for C++ User’s Guide.

Code Metrics (for C)
Code metric support, including cyclomatic number and other HIS metrics.

Polyspace verification can now generate metrics about code complexity, which
are based on the Hersteller Initiative Software (HIS) standard.

These metrics include:

• Project metrics – including number of recursions, number of include
headers, and number of files.

• File metrics – including comment density, and number of lines.

• Function metrics – including cyclomatic number, number of static paths,
number of calls, and Language scope.

When you run a verification with the -calculate-code-metrics option
enabled, you can view software quality metrics data in the Polyspace Metrics
Web interface (Code Metrics view), or by running a Software Quality
Objectives report from the Polyspace verification environment.

69

Polyspace® Release Notes

The software generates numeric values or pass/fail results for various metrics.

For more information, see “Software Quality with Polyspace Metrics”in the
Polyspace Products for C/C++ User’s Guide or Polyspace Products for C++
User’s Guide.

Filtering Orange Checks Caused by Input Data (New for C++)
Polyspace verification now identifies orange checks caused by input data for
C++ code, in addition to C code. The software provides additional information
on these orange checks, and allows you to hide them in the Run-Time Checks
perspective.

Note Although this type of orange check could reveal a bug, they usually do
not.

Verification can identify orange checks caused by:

• Stubs

• Main-generator calls

• Volatile variables

• Extern variables

• Absolute address

When the software identifies this type of orange check, the Run-Time Checks
perspective provides information on its cause.

70

Version 8.0 (R2010b) Polyspace® for C/C++ Products

The Polyspace code verification log file also lists possible sources of
imprecision for orange checks.

In addition, you can now hide these types of orange checks in the Run-Time
Checks perspective. When using Expert mode, click the Color filter icon,
then clear the Orange checks possibly impacted by inputs option.

71

Polyspace® Release Notes

The software hides orange checks impacted by inputs.

For more information, see “Working with Orange Checks Caused by Input
Data” in the Polyspace Products for C++ User’s Guide.

New Options to Classify Run-Time Checks and Coding Rules
Violations
When reviewing results in the Run-Time Checks perspective or the Coding
Rules perspective, the software now provides additional options for classifying
checks

After you review the check, you can specify the following:

• Classification – Select an option to describe the seriousness of the issue.

• Status – Select an option to describe how you intend to address the issue.

• Justified – Select the check box to indicate that you have justified this
check or rule violation.

72

Version 8.0 (R2010b) Polyspace® for C/C++ Products

• Comment – Enter additional information about the check

The software provides predefined values for Classification and Status. You
can also define your own statuses.

In addition to reviewing checks through the user interface, you can place
comments in your code that highlight and categorize checks identified in
previous verifications. The software displays the information that you provide
within your code comments, and marks the checks as Justified.

For more information, see “Reviewing and Commenting Checks ” in the
Polyspace Products for C/C++ User’s Guide or Polyspace Products for C++
User’s Guide.

Compatibility Considerations. The syntax for code comments has changed
to reflect the new options for categorizing checks.

The syntax for run-time checks is now:

/* polyspace<RTE:RTE1 : [Classification] :
[Status] > [Comment] */

The syntax for coding-rule violations is now:

/* polyspace<JSF:Rule1 : [Classification] :
[Status] > [Comment] */

If you placed comments in your code using the previous syntax, the comments
will still appear in your results, but the text may be displayed in different
columns.

For more information on code comments, including full syntax, see
“Highlighting Known Coding Rule Violations and Run-Time Errors” in the
Polyspace Products for C/C++ User’s Guide or Polyspace Products for C++
User’s Guide.

Japanese and Korean Text in Comments
Japanese and Korean characters are now supported for comments in results
review.

73

Polyspace® Release Notes

For more information, see “Reviewing Checks Progressively”in the Polyspace
Products for C/C++ User’s Guide or Polyspace Products for C++ User’s Guide.

Pointer Information in the Run-Time Checks Perspective
Enhanced ToolTip messages on pointers to improve understanding of
problems with the pointer.

For example, messages on offset in the allocated buffer now indicate if the
pointer is inside its bounds, in addition to giving raw numbers.

For more information, see “Using Pointer Information in Run-Time Checks
Perspective” in the Polyspace Products for C/C++ User’s Guide or Polyspace
Products for C++ User’s Guide.

Main Generation in C++
Enhanced main generation options in C++ allow you to use both main
generator and class analyzer modes at the same time (the options
-class-analyzer and -main-generator-calls can be used simultaneously).

In addition, the options Select methods called by the generated main
(-class-analyzer-calls), and Function calls (-main-generator-calls)
are enhanced to provide more flexibility in configuring what functions are
called. by the generated main.

The default behavior of the main generator is now as follows:

• If you set the Class name (-class-analyzer) option to all or custom, and
set -class-analyzer-calls, then the option -main-generator-calls is
automatically set to unused, unless you explicitly set another value for
-main-generator-calls.

• Setting the Function calls (-main-generator-calls) option to unused,
all, or custom automatically sets -class-analyzer to none, unless you
explicitly set the -class-analyzer option.

For more information, see “Generate a main (-main-generator)”in the
Polyspace Products for C++ Reference.

74

Version 8.0 (R2010b) Polyspace® for C/C++ Products

Compatibility Considerations. If you use scripts that specify a value for
the option -class-analyzer-calls, you may need to update your scripts to
reflect the new option arguments. The new syntax is:

-class-analyzer-calls [all | unused | inherited_all |
inherited_unused | custom]

Where:

• all corresponds to the previous argument "default."

• inherited_unused corresponds to previous argument "inherited."

• inherited_all means every inherited methods will be called by the
generated main.

Multiple Functions Called Before Main
The option First functions to call (-function-called before main) now
accepts a list of multiple functions, instead of just a single function.

For more information, see“Functions called after loop
(-function-called-after-loop)” in the Polyspace Products for
C/C++ Reference or “Generate a main (-main-generator)”in the Polyspace
Products for C++ Reference.

Support for C99 Extensions (C)
Partial support of C99 extensions.

A new option, -allow-language-extensions, enables verification to accept a
subset of common C language constructs and extended keywords, as defined
by the C99 standard or supported by many compilers.

When you select this option, the following constructs are supported:

• Designated initializers (labeling initialized elements)

• Compound literals (structs or arrays as values)

• Boolean type (_Bool)

• Statement expressions (statements and declarations inside expressions)

75

Polyspace® Release Notes

• typeof constructs

• Case ranges

• Empty structures

• Cast to union

• Local labels (__label__)

• Hexadecimal floating-point constants

• Extended keywords, operators, and identifiers (_Pragma, __func__,
__const__, __asm__)

In addition, when you use this option, the software ignores the following
extended keywords:

• near

• far

• restrict

• _attribute_(X)

• rom

For more information, see “Allow language extensions
(-allow-language-extensions)”in the Polyspace Products for
C/C++ Reference.

New Target Processor Support (C)
Added support for 64-bit target.

The Target processor type (-target) option now supports the target x86_64,
allowing the verification to emulate 64–bit processors.

For more information, see “Predefined Target Processor Specifications” in
the Polyspace Products for C/C++ User’s Guide or Polyspace Products for
C++ User’s Guide.

76

Version 8.0 (R2010b) Polyspace® for C/C++ Products

Default Target Processor
The default setting of the Target processor type (-target-processor) option
has changed from SPARC to i386.

Compatibility Considerations. If you launch verifications without
specifying a value for this option, the default value has changed. Therefore,
your verification results may change when compared to previous versions of
the software. Some checks may change color, and the Selectivity rate of your
results may change.

Default Operating System Target
The default setting of the Operating system target for Polyspace stubs
(-OS-target) option has changed from Solaris to Linux.

Compatibility Considerations. If you launch verifications without
specifying a value for this option, the default value has changed. Therefore,
your verification results may change when compared to previous versions of
the software. Some checks may change color, and the Selectivity rate of your
results may change.

Include Folders Added to Verification by Default
Polyspace software now automatically adds the following standard include
folders after any includes you specify:

• PolySpace_Install/Verifier/include/include-gnu

• PolySpace_Install/Verifier/include/include-gnu/next

The path to these folders will be printed in the log file at the beginning of
the compilation.

Compatibility Considerations. The total number of checks in your
verification may change when compared to previous releases, if you did not
previously include these folders.

Operating System Support
Added support for the Windows® 7 operating system.

77

Polyspace® Release Notes

Solaris™ operating system is no longer supported for new installations.

For more information, see the Polyspace Installation Guide.

Changes to Verification Results

• “Compatibility Considerations” on page 78

• “New NIP Check on Pointer to Member Function” on page 78

• “Generated Main Calls in the Main Loop and init Function” on page 79

• “INF Checks Replaced by Value on Range (C++)” on page 80

• “Value on Range (VOR) Values in pass0 Results” on page 81

• “Changes in Behavior of Inline and Sensitivity Context Options” on page 81

• “Permissiveness on Delete of Pointer to Incomplete Class” on page 81

Compatibility Considerations. Verification results may change when
compared to previous versions of the software. Some checks may change color,
and the Selectivity rate of your results may change.

Refer to the following sections for information on the specific changes.

New NIP Check on Pointer to Member Function. New NIP check
introduced on variables corresponding to a pointer to member function when
verifying the pointer.

Previously, pointers to member functions were translated into a structure
composed of 4 fields. In this release, these 4 fields are checked and the
information is merged into a NIP.

For example (in R2010a and earlier):

struct A {
virtual void f() { } ;
void g() {} ;

};

int main()
{

78

Version 8.0 (R2010b) Polyspace® for C/C++ Products

A a ;
void (A::*pmf)() ;
volatile int alea ;

if (alea)
assert(pmf != 0) ; // RED NIV located on '(' => expected a NIP

if (alea)
(a.*pmf)(); // no red, only grey

if (alea)
pmf = &A::f ;

else
pmf = &A::g ;

assert(pmf != 0) ; // spurious info on '(', green NIV instead of NIP

(a.*pmf)(); //

}

In R2010b, some NIV checks may change to NIP checks (on pointer to member
function) The Selectivity rate of your results may change when compared
to previous versions of the software.

Generated Main Calls in the Main Loop and init Function. The call of a
function given to the option -function-called-before-main is now removed
from the main-generator loop.

In previous releases, when an "init" function was called before the main loop,
it was also called in the main loop. For example:

void main(void)
{

/* ** *
* Initialization of global variables with random *
* ** */

/* ******************************* *

79

Polyspace® Release Notes

* Call of initialization function *
* ******************************* */
{

/* call it */
init();

}
while (PST_TRUE())
{

/* ***************** *
* Call of functions *
* ***************** */
if (PST_TRUE())
{

/* call it */
init();

}
if (PST_TRUE())
{

/* call it */
foo();

}
}

}

This init function is now removed from the main-generator loop.

The Selectivity rate of your results may change when compared to previous
versions of the software.

INF Checks Replaced by Value on Range (C++). When transforming C
checks into C++ checks, the software changes INF checks into a new value on
range category (VOBJ) and displays them like other value on range (VOR)
information in the Run-Time Checks perspective.

The number of checks in your results may decrease when compared to
previous releases.

80

Version 8.0 (R2010b) Polyspace® for C/C++ Products

Value on Range (VOR) Values in pass0 Results. Verification results now
give value on range values (intervals) computed during pass0.

In previous releases, value on range values in pass0 could only be constants
or the type full-range.

When reviewing pass0 results, value on range tooltips will now contain more
information than in previous releases.

Changes in Behavior of Inline and Sensitivity Context Options.
Verification now displays a warning of you specify a nonexistent function
as an argument of the options Inline (-inline) or Sensitivity context
(-context-sensitivity). The option is ignored, and verification continues.

In previous releases, specifying a nonexistent function caused the verification
to stop.

Permissiveness on Delete of Pointer to Incomplete Class. Polyspace
verification now gives a warning when it detects a delete on a pointer with
incomplete class, unless you set the Dialect (-dialect) option to iso. If you
specify the iso dialect, the verification will raise a compilation error.

In previous releases, a delete on a pointer with incomplete class implied a
crash, and produced an error. For example:

#include <memory>

typedef class BaseClass;
typedef class Container
{
private:

std::auto_ptr<BaseClass> data;

public:
Container(std::auto_ptr<BaseClass> p) : data(p) {};

};

In R2010b, this code will be accepted with a warning, except in iso mode,
where it will raise a compilation error.

81

Polyspace® Release Notes

Changes to Coding Rules Checker Results

• “Compatibility Considerations” on page 82

• “MISRA and JSF Violations No Longer Reported on Internal Include
Folders” on page 82

• “MISRA-C++ Rule 2-10-2 Violations on Type Hidden by Using Directive”
on page 82

• “MISRA-C++ Rules 2-10-4 and 2-10-6 Violations on Templates” on page 83

• “MISRA-C++ Rule 3-1-1 Duplicate Violations” on page 84

• “MISRA-C++ Rule 3-4-1 Violations on Local Variables” on page 84

• “MISRA-C++ Rule 7-4-3 Violations on Assembly Language” on page 85

• “MISRA-C++ Rule 12-1-1, 12-1-2, and 12-8-2 Violations ” on page 85

• “JSF Rule AV-136 Violations on Local Variables” on page 87

Compatibility Considerations. Due to changes in the coding rules checker,
the number of coding rule violations may change when compared to previous
versions of the software.

Refer to the following sections for information on the specific changes.

MISRA and JSF Violations No Longer Reported on Internal Include
Folders. The coding rules checker now ignores the Include folders provided
with the product (include-gnu/ and include-linux/).

No violations are reported for identifiers appearing in hidden files, even if
these files are hidden in a hard-coded way.

The total number of violations reported by the coding rules checker may
decrease when compared to previous releases, since any violations within the
include files are no longer reported.

MISRA-C++ Rule 2-10-2 Violations on Type Hidden by Using Directive.
The MISRA-C++ checker is more precise on violations of rule 2-10-2,
“Identifiers declared in an inner scope shall not hide an identifier declared in
an outer scope,” when the type is hidden by a using directive on the same type.

82

Version 8.0 (R2010b) Polyspace® for C/C++ Products

For example:

#include "misra.h"

namespace ns1 {
class A // No Violation since the type A is declared only here.
{

A & operator= (A const & rhs);
public:

A ();
virtual void bar() = 0;

};

}
using ns1::A;
namespace ns2 {

class D : public A
{
public:

virtual void foo() = 0;
D () : A()
{
}

};
}

In previous releases, the MISRA-C++ checker incorrectly reported a violation
on the type A.

You may see fewer violations of rule 2-10-2 in MISRA C++ reports, when
compared with previous releases.

MISRA-C++ Rules 2-10-4 and 2-10-6 Violations on Templates. The
coding rules checker no longer reports violations of MISRA-C++ Rules 2-10-4
“A class, union or enum name (including qualification, if any) shall be a
unique identifier,” and 2-10-6 “If an identifier refers to a type, it shall not also
refer to an object or a function in the same scope” when the template class
is present in the code. A violation is reported only for explicit specialization
(which has its own declaration).

83

Polyspace® Release Notes

You may see fewer violations of rules of 2-10-4 and 2-10-6 in MISRA C++
reports, when compared with previous releases.

MISRA-C++ Rule 3-1-1 Duplicate Violations. The coding rules checker
no longer reports duplicate violations of MISRA-C++ Rule 3-1-1 ”It shall be
possible to include any header file in multiple translation units without
violating the One Definition Rule.”

In previous releases, the coding rules checker sometimes incorrectly reported
this violation multiple times on the same function.

You may see fewer violations of rule 3-1-1 in MISRA C++ reports, when
compared with previous releases.

MISRA-C++ Rule 3-4-1 Violations on Local Variables. The MISRA-C++
coding rules checker is more precise on violations of Rule 3-4-1, “An identifier
declared to be an object or type shall be defined in a block that minimizes
its visibility.”

For example, the coding rules checker no longer reports violations of rule
3-4-1 for the following code:

volatile int32_t rd;
if (rd != 0) {

int32_t i;
{

int32_t j;
{

goto L1;
}
rd = j;

}
rd = i;

}

In previous releases, the coding rules checker incorrectly reported a violation
of rule 3-4-1 for the variable rd.

You may see fewer violations of rule 3-4-1 in MISRA C++ reports.

84

Version 8.0 (R2010b) Polyspace® for C/C++ Products

MISRA-C++ Rule 7-4-3 Violations on Assembly Language. The
MISRA-C++ checker no longer reports errors for rule 7-4-3, “Assembly
language shall be encapsulated and isolated,” for certain compliant
constructions. For example:

void Delay_a (void)
{

asm ("NOP"); // Compliant
}

In previous releases, the MISRA-C++ checker incorrectly reported a violation
of rule 7-4-3 for this code.

You may see fewer violations of rule 7-4-3 in MISRA C++ reports.

MISRA-C++ Rule 12-1-1, 12-1-2, and 12-8-2 Violations . The
MISRA-C++ checker is more precise on violations of rule 12-1-1, “An object’s
dynamic type shall not be used from the body of its constructor or destructor,”
rule 12-1-2 “All constructors of a class should explicitly call a constructor
for all of its immediate base classes and all virtual base classes,” and rule
12-8-2 “The copy assignment operator shall be declared protected or private
in an abstract class.”

Violations of rule 12-1-1 are now reported on destructors. For example:

class C2
{
public:

~C2 ()
{

typeid (C2); // New 12-1-1 violation reported here
C2::foo ();
foo ();
dynamic_cast< C2* > (this);

}
virtual void foo ();
C2 ()
{

typeid (C2); // 12-1-1 violation reported
C2::foo ();
foo ();

85

Polyspace® Release Notes

dynamic_cast< C2* > (this);
}

};

In addition, violations of these rules are now reported in the following cases:

• On typeid on any class with virtual function in itself or in one of its base.

• On typeid on pointer this or conversion of pointer this.

• On dynamic_cast on pointer this or conversion of pointer this.

For example, in the following code violations are now reported on typeid if
the type is struct:

struct S2
{

~S2 ()
{

typeid (S2); // New violation reported here
S2::foo ();
foo ();
dynamic_cast< S2* > (this);

}
virtual void foo ();
S2 ()
{

typeid (S2); // New violation reported here
S2::foo ();
foo ();
dynamic_cast< S2* > (this);

}
};

In previous releases, the MISRA-C++ checker did not report these violations.

You may see additional violations of rule 12-1-1, 12-1-2, and 12-8-2 in MISRA
C++ reports, when compared with previous releases.

86

Version 8.0 (R2010b) Polyspace® for C/C++ Products

JSF Rule AV-136 Violations on Local Variables. The JSF C++ coding
rules checker is more precise on violations of Rule 136, “Declarations should
be at the smallest feasible scope.”

For example, the coding rules checker no longer reports violations of rule 136
for the following code:

volatile int32_t rd;
if (rd != 0) {

int32_t i;
{

int32_t j;
{

goto L1;
}
rd = j;

}
rd = i;

}

In previous releases, the coding rules checker incorrectly reported a violation
of rule 136 for the variable rd.

You may see fewer violations of rule 136 in JSF C++ reports.

87

Polyspace® Release Notes

Polyspace Server for C/C++ Product

Polyspace Metrics Web Interface
A web-based tool for software development managers, quality assurance
engineers, and software developers, which allows you to do the following
in software projects:

• Evaluate software quality metrics

• Monitor the variation of code metrics, coding rule violations, and run-time
checks through the lifecycle of a project

• View defect numbers, run-time reliability of the software, review progress,
and the status of the code with respect to software quality objectives.

In addition, if you have the Polyspace® Client™ for C/C++ product installed
on your computer, you can drill down to coding rule violations and run-time
checks in the Polyspace verification environment. This allows you to:

• Review coding rule violations

• Review run-time checks and, if required, classify these checks as defects

88

Version 8.0 (R2010b) Polyspace® for C/C++ Products

For more information, see Software Quality with Polyspace Metrics in the
Polyspace Products for C/C++ User’s Guide or Polyspace Products for C++
User’s Guide.

Automatic Verification
Configure verifications to start automatically and periodically, for example, at
a specific time every night. At the end of each verification, the software stores
results in a results repository and updates the metrics for your software
project. You can also configure the software to send you an email at the end
of the verification. This email contains links to results, compilation errors,
run-time errors, or processing errors.

For more information, see Specifying Automatic Verification in the Polyspace
Products for C/C++ User’s Guide or Polyspace Products for C++ User’s Guide.

Operating System Support
Added support for the Windows 7 operating system.

Solaris operating system is no longer supported for new installations.

For more information, see the Polyspace Installation Guide.

89

Polyspace® Release Notes

Version 6.0 (R2010b) Polyspace for Ada Products
This table summarizes what’s new in V6.0 (R2010b):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Includes fixes:
Polyspace Client for Ada Bug
Reports
Polyspace Server for Ada Bug
Reports

New features and changes introduced in this version are organized by product:

• “Polyspace® Client for Ada Product” on page 90

• “Polyspace® Server for Ada Product” on page 96

Polyspace Client for Ada Product

Polyspace Graphical User Interface
Redesigned Polyspace graphical user interface replaces the Launcher
and Viewer modules with a single, unified interface called the Polyspace
verification environment (PVE).

You use the Polyspace verification environment to create Polyspace projects,
launch verifications, and review verification results. The new interface also
enables you to provide comments in the source code or in the results.

The Polyspace verification environment consists of two perspectives:

• “Project Manager Perspective” on page 91

• “Run-Time Checks Perspective” on page 92

90

http://www.mathworks.com/support/bugreports/?product=PG&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PG&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PG&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2010b

Version 6.0 (R2010b) Polyspace® for Ada Products

Project Manager Perspective. The Project Manager perspective allows you
to create projects, set verification parameters, and launch verifications.

For information on using the Project Manager perspective, see “Setting Up a
Verification Project” in the Polyspace Products for Ada User’s Guide.

91

Polyspace® Release Notes

Run-Time Checks Perspective. The Run-Time Checks perspective allows
you to review verification results, comment individual checks, and track
review progress.

For information on using the Run-Time Checks perspective, see “Reviewing
Verification Results” in the Polyspace Products for Ada User’s Guide.

92

Version 6.0 (R2010b) Polyspace® for Ada Products

Data Range Specifications
The Data Range Specifications (DRS) feature allows you to set constraints on
data ranges using a text file. With this text file, you can specify data ranges for
global variables, stubbed functions and procedures, and function call inputs.

For more information, see Specifying Data Ranges for Variables, Functions,
and Procedures in the Polyspace Products for Ada User’s Guide.

Extended Support for Tasks
You can now verify Ada code that contains the following task-related features :

• Pointers to explicit tasks

• Private task types

• Tasks with discriminants

• Entry families

• Explicit tasks declared in a package – you can now verify the package with
the -main-generator option

Previously, these features would generate errors during a verification.

Preprocessor Macros for Compilation
You can now specify, with the -D option, the use of preprocessor macros in code
compilation. The -U option, which nullifies this -D option, is also available.

For more information, see “Defined Preprocessor Macros”(-D compiler-flag)
and “Undefined Preprocessor Macros” (-U compiler-flag) in the Polyspace
Products for Ada Reference Guide.

New Options to Classify Run-Time Checks
When reviewing results in the Run-Time Checks perspective, the software
now provides additional options for classifying checks

93

Polyspace® Release Notes

After you review the check, you can specify the following:

• Classification – Select an option to describe the seriousness of the issue.

• Status – Select an option to describe how you intend to address the issue.

• Justified – Select the check box to indicate that you have justified this
check.

• Comment – Enter additional information about the check

The software provides pre-defined values for Classification and Status. You
can also define your own statuses.

In addition to reviewing checks through the user interface, you can place
comments in your code that highlight and categorize checks identified in
previous verifications. The software displays the information that you provide
within your code comments, and marks the checks as Justified.

For more information, see “Reviewing and Commenting Checks” in the
Polyspace Products for Ada User’s Guide.

Compatibility Considerations. The syntax for code comments has changed
to reflect the new options for categorizing checks.

The syntax for run-time checks is now:

-- polyspace<RTE:RTE1 : [Classification] : [Status] > [Comment]

94

Version 6.0 (R2010b) Polyspace® for Ada Products

If you placed comments in your code using the previous syntax, the comments
will still appear in your results, but the text may be displayed in different
columns.

For more information, see “Syntax for Run-Time Errors” in the Polyspace
Products for Ada User’s Guide.

Permissiveness on File and Folder Names
Polyspace software now allows space characters in the names of Projects,
source files, and folders, as well as in option arguments.

In addition, multiple source files with the same name are now allowed.

Note Non-ASCII characters in file names are not supported.

Default Target Processor
The default setting of the Target processor type (-target-processor) option
has changed from SPARC to i386.

Compatibility Considerations. If you launch verifications without
specifying a value for this option, the default value has changed. Therefore,
your verification results may change when compared to previous versions of
the software. Some checks may change color, and the Selectivity rate of your
results may change.

Operating System Support
Added support for the Windows 7 operating system.

Solaris operating system is no longer supported for new installations.

For more information, see the Polyspace Installation Guide.

95

Polyspace® Release Notes

Polyspace Server for Ada Product

Polyspace Metrics Web Interface
A web-based tool for software development managers, quality assurance
engineers, and software developers, which allows you to do the following
in software projects:

• Evaluate software quality metrics

• Monitor the variation of code metrics, and run-time checks through the
lifecycle of a project

• View defect numbers, run-time reliability of the software, review progress,
and the status of the code with respect to software quality objectives.

In addition, if you have the Polyspace Client for Ada product installed on your
computer, you can drill down to run-time checks in the Polyspace verification
environment. You can review these run-time checks and, if required, classify
these checks as defects.

For more information, see Software Quality with Polyspace Metrics in the
Polyspace Products for Ada User’s Guide.

96

Version 6.0 (R2010b) Polyspace® for Ada Products

Automatic Verification
Configure verifications to start automatically and periodically, for example, at
a specific time every night. At the end of each verification, the software stores
results in a results repository and updates the metrics for your software
project. You can also configure the software to send you an email at the end
of the verification. This email contains links to results, compilation errors,
run-time errors, or processing errors.

For more information, see Specifying Automatic Verification in the Polyspace
Products for Ada User’s Guide.

Operating System Support
Added support for the Windows 7 operating system.

Solaris operating system is no longer supported for new installations.

For more information, see the Polyspace Installation Guide.

97

Polyspace® Release Notes

Version 5.6 (R2010b) Polyspace Model Link Products
This table summarizes what’s new in V5.6 (R2010b):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Includes fixes:
Polyspace Model Link SL Bug
Reports
Polyspace Model Link TL Bug
Reports
Polyspace UML Link RH Bug
Reports

New features and changes introduced in this version are organized by product:

• “Polyspace Model Link SL Product” on page 98

• “Polyspace UML Link RH Product” on page 99

Polyspace Model Link SL Product

Data Range Management
Improved DRS generation in the Polyspace Model Link SL product using the
Embedded Coder™ codeInfo feature.

DRS generation can now:

• Locate input ports, and gather min/max data from the MATLAB workspace
or blocks in the model to use as constraints.

• Locate output ports, and gather min/max data from the MATLAB
workspace or blocks in the model to use as properties to be proven.

For more information, see the Polyspace Model Link Products User’s Guide.

98

http://www.mathworks.com/support/bugreports/?product=PG&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PG&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PH&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PH&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PI&release=R2010b
http://www.mathworks.com/support/bugreports/?product=PI&release=R2010b

Version 5.6 (R2010b) Polyspace® Model Link Products

Verification Options Set by Default
The following options are no longer set by default when you launch a
verification.

• -ignore-float-rounding

• -allow-ptr-arith-on-struct

Compatibility Considerations. Verification results may change when
compared to previous versions of the software. Some checks may change color,
and the Selectivity rate of your results may change.

Changes to verification results will be more significant when compared to
release R2008b or earlier, and less significant with R2009a or later.

Simulink Software Support
Added support for Simulink Version 7.6 (R2010b).

Polyspace UML Link RH Product

Rhapsody Support
Added support for Telelogic® Rhapsody® Version 7.4.

99

Polyspace® Release Notes

Version 7.2 (R2010a) Polyspace for C/C++ Products
This table summarizes what’s new in V7.2 (R2010a):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Includes fixes:
Polyspace Client for C/C++
Bug Reports
Polyspace Server for C/C++
Bug Reports

New features and changes introduced in this version are organized by product:

• “Polyspace® Client for C/C++ Product” on page 100

• “Polyspace® Server for C/C++ Product” on page 124

Polyspace Client for C/C++ Product

License Activation
Polyspace products now support the MathWorks software activation
mechanism.

Activation is a process that verifies licensed use of MathWorks products.
The process validates your product licenses and ensures that they are used
correctly. You must complete the activation process before you can use
Polyspace software.

Note If you are using Designated Computer (Individual) licenses, you must
activate the license for each Polyspace system individually. However, if you
are using Concurrent licenses for multiple Polyspace systems, you do not
need to activate each Polyspace system. You activate the license once (for the
FLEXnet license server), then provide license files for each Polyspace system.

100

http://www.mathworks.com/support/bugreports/?product=PC&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PC&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PC&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2010a

Version 7.2 (R2010a) Polyspace® for C/C++ Products

The easiest way to activate the software is to log in to your MathWorks
Account during installation. At the end of the installation process, the
Polyspace Software Activation dialog box opens.

Follow the prompts in the Polyspace Software Activation dialog box to
complete the activation process.

If you do not have a MathWorks account, you can create one during the
activation process. To create an account, you must have an Activation Key,
which identifies the license you want to install and activate.

If your Polyspace system is not connected to the internet, you can access the
MathWorks License Center on a computer with internet access, activate your
license, and download a license file for transfer to your Polyspace system. If
you do not have access to a computer with an Internet connection, contact
Customer Support.

For more information on how to activate your software, see “Activating
Polyspace Software”in the Polyspace Installation Guide.

101

Polyspace® Release Notes

For more information on software activation, including frequently asked
questions, refer to the MathWorks Web site:
www.mathworks.com/support/activation/polyspace.html

MISRA C++ Checker
Polyspace software can now analyze your C++ code to check compliance with
the MISRA C++ coding standard.

The Polyspace MISRA C++ checker provides messages when MISRA C++
rules are not respected. Most messages are reported during the compile phase
of a verification.

The MISRA C++ checker can check 167 of the 183 statically enforceable
MISRA C++ coding rules.

Note The Polyspace MISRA C++ checker is based on MISRA C++:2008 –
“Guidelines for the use of the C++ language in critical systems." For more
information on these coding standards, see http://www.misra-cpp.com.

For more information, see “Checking Coding Rules”, in the Polyspace Products
for C++ User’s Guide.

Source Code Comments
Polyspace software now allows you to place comments in your code that
provide information about known coding rule violations and run-time errors.
You can use these comments to

• Hide or highlight known coding rule violations.

• Highlight and categorize previously identified run-time errors.

This information can then make the review process quicker and easier by
allowing you to focus on new coding rule violations and run-time errors. .

When you review verification results, the Viewer displays comments on
individual checks. You can then skip these commented checks, or simply use
them as additional information during your review.

102

http://www.mathworks.com/support/activation/polyspace.html
http://www.misra-cpp.com/

Version 7.2 (R2010a) Polyspace® for C/C++ Products

The coding rules log in the Launcher displays comments regarding coding
rules. You can use these comments to filter out commented violations from
the results, or simply to provide additional information on specific violations.

For more information, see “Highlighting Known Coding Rule Violations
and Run-Time Errors” in the Polyspace Products for C/C++ User’s Guide or
Polyspace Products for C++ User’s Guide.

Importing Review Comments
New Import/Export checks and comments report allows you to you to compare
the source code and verification results from a previous verification to the
current verification, and highlights differences in the results.

Importing review comments from a previous verification can be extremely
useful, since it allows you to avoid reviewing checks twice, and to compare
verification results over time. However, if your code has changed since the
previous verification, or if you have upgraded to a new version of the software,
the imported comments may not be applicable to your current results. For
example, the color of a check may have changed, or the justification for an
orange check may no longer be relevant to the current code.

Use the Import/Export checks and comments report to highlight these
differences, and focus on unreviewed results.

103

Polyspace® Release Notes

For more information, see “Importing and Exporting Review Comments” in
the Polyspace Products for C/C++ User’s Guide.

Compatibility Considerations. In previous releases, when you specified
the option -keep-all-files, it was possible to add comments to the results
for a specific verification level (for example, pass2) , and then import them
into another set of results (for example pass4) in the same results folder.

This is no longer possible in R2010a.

Data Range Specifications (DRS) Enhancements
Enhanced Data Range Specifications, including new format and workflow.

The Polyspace Data Range Specifications (DRS) feature now allows you to set
constraints on data ranges using a new graphical user interface. When you
enable the DRS feature, Polyspace software analyzes the files in your project,
and generate a DRS template containing all the global variables, user defined
functions, and stub functions for which you can specify data ranges.

104

Version 7.2 (R2010a) Polyspace® for C/C++ Products

To specify data ranges, you then edit this template using the Polyspace DRS
configuration interface.

In addition, the DRS feature now allows you to specify constraints for
additional types of data, including:

• Input parameters for user-defined functions called by the main generator

• Static variables

• Pointers (C only)

105

Polyspace® Release Notes

For more information, see “Specifying Data Ranges for Variables and
Functions (Contextual Verification)” in the Polyspace Products for C/C++
User’s Guide or Polyspace Products for C++ User’s Guide.

Compatibility Considerations. Symbols ranged by DRS (init, permanent
or globalassert mode) are no longer ignored by the main-generator. This
can lead to differences in values and colors, for example full range instead of
0, or orange instead of green.

Pointer Information in the Viewer
Enhanced ToolTips in the Viewer now display pointer information, in addition
to data ranges.

The software now provides, through tooltip messages, useful information
about pointers to variables or functions. You see this information in the
source code view when you place your cursor over a pointer, dereference
character, function call, or function declaration. In addition, if you click a
pointer check, dereference character, function call, or function declaration,
the software displays pointer information in the selected check view.

For more information, see “Using Pointer Information in Run-Time Checks
Perspective” in the Polyspace Products for C/C++ User’s Guide or Polyspace
Products for C++ User’s Guide.

Enhanced Call Tree View and Variables View (Data Dictionary)
Enhanced user interface of the Call Tree View and Variables View improves
navigation and usability.

In the Call Tree View, you can now double click any function call to go directly
to the function definition.

106

Version 7.2 (R2010a) Polyspace® for C/C++ Products

In the Variables View, you can now right-click a variable to show legend
information, and can open the concurrent access graph for a variable directly
from the Variables View.

107

Polyspace® Release Notes

For more information, see “Exploring the Run-Time Checks Perspective” in
the Polyspace Products for C/C++ User’s Guide or Polyspace Products for
C++ User’s Guide.

Enhanced Search Function in Viewer
Enhanced Search feature in the Viewer improves navigation in your results.

The Viewer toolbar now contains a Search interface. This allows you to quickly
enter search terms, specify search options, and set the scope for your search.

108

Version 7.2 (R2010a) Polyspace® for C/C++ Products

For more information, see “Exploring the Run-Time Checks Perspective” in
the Polyspace Products for C/C++ User’s Guide or Polyspace Products for
C++ User’s Guide.

Filtering Orange Checks in Viewer (C only)
Polyspace verification now identifies orange checks caused by input data. The
software provides additional information on these orange checks, and allows
you to hide them in the Viewer.

Note Although this type of orange check could reveal a bug, they usually do
not.

Verification can identify orange checks caused by:

• Stubs

• Main-generator calls

• Volatile variables

• Extern variables

• Absolute address

When the software identifies this type of orange check, the Viewer provides
information on its cause.

109

Polyspace® Release Notes

The Polyspace code verification log file also lists possible sources of
imprecision for orange checks.

In addition, you can now hide these types of orange checks in the Viewer.
When using Expert mode, click the filter button to hide oranges impacted by
input data.

110

Version 7.2 (R2010a) Polyspace® for C/C++ Products

#��������
�
�
�!	
����������	���

For more information, see “Working with Orange Checks Caused by Input
Data” in the Polyspace Products for C/C++ User’s Guide or Polyspace Products
for C++ User’s Guide.

Methodological Assistant Enhancements
Enhanced Methodological Assistant in the Viewer.

The Methodological Assistant now allows you to define either a minimum
percentage of orange checks to review, or a specific number of orange checks
to review. This makes it easier to set specific quality criteria for your code at
each level of review.

In addition, the Methodological Assistant now presents checks in a more
logical order. Checks that are most likely to reveal bugs appear first, while
non-useful checks no longer appear.

The new order of checks is:

1 All red checks (an error always occurs)

2 Orange checks known to produce errors in some situations (dark orange).
For example, red for one call to a procedure and green for another.

3 Some gray checks (UNR checks)

4 Other orange checks (depending on the methodology and criterion level)

Most gray checks no longer appear in the Methodological Assistant, since
reviewing many gray checks that occur after a red check is not useful. Only
UNR checks that are not nested within dead code blocks appear in assistant
mode.

111

Polyspace® Release Notes

Compatibility Considerations. The number of checks presented for review
in Assistant mode is different than in previous releases, since most gray
checks no longer appear. In addition, the order in which you review checks
is different.

Class Analyzer Enhancements for C++
Enhanced class analyzer can analyze a file with more than one class.

Unit-by-unit verifications can now verify files containing more than one class.
Every class and function out of class contained in such files is now verified.

For more information, see “Polyspace Class Analyzer” in the Polyspace
Products for C++ User’s Guide.

Compatibility Considerations. In -unit-by-unit mode, files that
previously were not verified because they contained more than one class are
now verified.

Change to Time Format in Log File
The time format reported in the log file has been updated to provide more
information.

Example of new line (R2010a and later):
User time for polyspace-c: 00:02:24 (144.6real, 144.6u + 0s
(0.3gc))

Example of old line (R2009b and earlier):
User time for rte-kernel: 4684.4real, 4319.2u + 324.6s (0.3gc)

Compatibility Considerations. The new time format can impact some
scripts that summarize information from the log file.

Merging of OVFL and UNFL Checks
Overflow (OVFL) and underflow (UNFL) checks have been merged into a single
OVFL check. This reduces the number of orange checks you need to review,
while continuing to provide the same information.

112

Version 7.2 (R2010a) Polyspace® for C/C++ Products

For red and orange checks, the check message provides the bounds that cause
the overflow.

Compatibility Considerations. The Selectivity rate of your results may
change when compared to previous versions of the software. Underflows and
overflows are now identified as a single check, so the Selectivity will decrease
if the checks were green (2 green checks become 1 green), but will increase if
the checks were both orange (2 orange checks become 1 orange).

Improved UNR Checks
Enhanced unreachable code (UNR) checks now provide additional information
to help you understand the results. UNR checks now include information on:

• Localization of condition

• Type of condition

• End of block localization

For example:

// UNR (unreachable code) => UNR (unreachable code) \
(end of block at line YYY)

// UNR (unreachable code) => UNR (unreachable code) \
(condition at line XXX, column AAA) ?

In addition, verification now reports new UNR checks on:

• unreachable statements after return, break, goto, and continue
statements.

• if statements when the if condition is always true and if there is no
else statement.

For more information on these new checks, see “Changes to Verification
Results” on page 114.

113

Polyspace® Release Notes

Compatibility Considerations. The number of checks in your verification
results may change due to the new UNR checks.

Changes to Verification Results

• “Compatibility Considerations” on page 114

• “Merging of OVFL and UNFL Checks” on page 115

• “New Gray (UNR) Checks on return, break, goto, and continue
Statements” on page 115

• “New Gray (UNR) Check on If Statement Without Else” on page 115

• “Nested Gray (UNR) Checks No Longer Appear in Reports” on page 116

• “Dead Code on Else Branch” on page 116

• “Data Ranges for Fields of Structures (C)” on page 116

• “Functions Called Before Main in Unit-by-unit Verification (C++)” on page
117

• “Main Generator Initialization of Function Pointers” on page 117

• “OVFL Check on Array Index Removed” on page 118

• “IDP Check on Local Member Access Removed (C++)” on page 118

• “OBAI Check on Dynamic Initialization of Array Removed (C++)” on page
119

• “Duplicate Checks in For/While Loops Removed” on page 120

• “malloc(0) Limitation Removed” on page 120

• “Change in OOP on Deletion of Null Pointer (C++)” on page 120

• “Change to IDP Check When Accessing a Field of an Inherited Class (C)”
on page 121

Compatibility Considerations. Verification results may change when
compared to previous versions of the software. Some checks may change color,
and the Selectivity rate of your results may change.

Refer to the following sections for information on the specific changes.

114

Version 7.2 (R2010a) Polyspace® for C/C++ Products

Merging of OVFL and UNFL Checks. Overflow (OVFL) and underflow
(UNFL) checks have been merged into a single OVFL check. This reduces the
number of orange checks you need to review, while continuing to provide
the same information.

For red and orange checks, the check message provides the bounds that cause
the overflow.

The Selectivity rate of your results may change when compared to previous
versions of the software.

New Gray (UNR) Checks on return, break, goto, and continue
Statements. Verification now reports gray UNR checks on unreachable
statements after return, break, goto, and continue statements.

For example:

67 switch (counter) {
68 case 0:
69 counter = 0;
70 break;
71 case 1:
72 counter = 2;
73 break;
74 counter = 2; /* unreachable code ! */
75 break;

The number of checks in your verification results may increase due to these
new UNR checks.

New Gray (UNR) Check on If Statement Without Else. Verification now
reports a gray UNR check on an if statement when the if condition is always
true and if there is no else statement.

This allows you to find if branches that are always reachable, even when
there is no else.

For example:

if (true()) // UNR if-condition always evaluates to true

115

Polyspace® Release Notes

{
// ...

}

The number of checks in your verification results may increase due to new
UNR checks.

Nested Gray (UNR) Checks No Longer Appear in Reports. Nested
UNR checks in unreachable blocks no longer appear in the Methodological
Assistant, or in generated reports.

The number of checks in generated reports may decrease due to elimination
of these checks..

Dead Code on Else Branch. Verification now reports gray UNR checks on
empty branches.

For example:

void fct (void)
{
int a = 1;
if (a){
a++;

}
else // ==> Now gray UNR
{
// dummy
}

}

The number of checks in your verification results may increase due to the
new UNR check on empty branches.

Data Ranges for Fields of Structures (C). Symbols ranged by DRS (init,
permanent or globalassertmode) are now considered by the main-generator.

In previous releases, if DRS provided ranges for some fields of a structure, the
other fields (not ranged by DRS) were not initialized by the main-generator,
and therefore had an initial value of 0.

116

Version 7.2 (R2010a) Polyspace® for C/C++ Products

For example:

// DRS: s.x 0 10 init

struct { int x; int y; } s;
int foo(void)
{

return s.y; // y value: 0, full-range expected
}

Symbols ranged by DRS are no longer ignored by the main-generator. This
can lead to differences in values and colors, for example full range instead of
0, or orange instead of green.

Functions Called Before Main in Unit-by-unit Verification (C++). The
behavior of the option -function-called-before-main has changed for
unit-by-unit verifications of C++ code.

When you set the option -function-called-before-main in unit-by-unit
mode:

• If the init function is an out of class function, it is called at the beginning
of the generated main (before calls to constructors).

• If the init function is a method, it is called after all constructor calls of the
corresponding class.

In previous releases, the init function was always called after constructor
calls for each class.

Verification results may change when compared to previous versions of the
software, due to changes in the call sequence.

Main Generator Initialization of Function Pointers. The main-generator
now initializes function pointers with default-mode stubs instead of pure
stubs.

In previous releases, the main-generator initialized function pointers with
pointers to pure functions.

117

Polyspace® Release Notes

This change may lead to differences in the color of checks in your results.
For example:

int x;
s->fptr(&x);
read(x); // LNIV red with 9b -> orange with 10a

OVFL Check on Array Index Removed. In previous releases, verification
reported an overflow (OVFL) check on pointer/array dereference. However,
this overflow never occurred if there was an OBAI problem first. Therefore,
the check was not useful.

In R2010a, the OVFL check no longer appears on array index, the check has
been merged into the OBAI check.

For example, in the following code there is no OVFL check on the array index.

int main(void)
{

volatile int i,x;
int tab[10];

x = tab[i];

}

The Selectivity of your results may change when compared to previous
versions of the software. The OVFL check on array access has been merged
into the OBAI check, so there are fewer checks reported. Selectivity will
increase if the overflow check was orange, but will decrease if the OVFL
check was green.

IDP Check on Local Member Access Removed (C++). Verification no
longer reports an IDP check on local member access.

In previous releases, verification reported an IDP check. This IDP appeared
on the “.” when accessing the field of an object returned by copy construction.

For example:

struct C {

118

Version 7.2 (R2010a) Polyspace® for C/C++ Products

C(const C&c1) { k =c1.k; }
C() { k = 0 ;}
int k ;

} ;

C g() {
C ret ;
ret.k = 2 ; // IDP on "." here
return ret;

}

int main() {
C c = g() ;

}

However, this check was caused by an internal pointer and was not useful.

The Selectivity of your results may change when compared to previous
versions of the software.

OBAI Check on Dynamic Initialization of Array Removed (C++).
Verification no longer reports an OBAI check on dynamic initialization of
array.

In previous releases, verification reported an OBAI check. The OBAI check
appeared on dynamic initialization of array with an aggregate.

For example:

nt main(void)
{

float tab[] = // extra green obai check
{

4.3,
0.0F

};

return 0;
}

119

Polyspace® Release Notes

However, this check was caused by an internal translation and was not useful.

The Selectivity of your results may change when compared to previous
versions of the software.

Duplicate Checks in For/While Loops Removed. Verification no longer
reports duplicate checks in condition expression of for and while loops.

Any duplicate checks on a loop condition are now merged in a single check,
except when condition expression is complex.

Due to the reduction in the number of checks, the selectivity of your results
may change when compared to previous versions of the software.

malloc(0) Limitation Removed. Verification no longer has a limitation
when malloc(0) returns a null pointer.

In previous releases, verification reported a green check on the following code:

assert(malloc(0) == NULL) ;

However, this construction could fail. The software now correctly verifies
this construction.

Verification results may change when compared to previous versions of the
software.

Change in OOP on Deletion of Null Pointer (C++). Verification no longer
reports a red OOP check when deleting a null pointer.

In previous releases, verification reported a red OOP check on the following
code:

struct A {
virtual void f() { }
~A() { }

} ;

int main() {
A* pa ;
if (0) pa = (A*) 0Xfff;

120

Version 7.2 (R2010a) Polyspace® for C/C++ Products

pa = 0;
delete pa ; // red OOP

}

However, calling "delete" on a null pointer is allowed. The red OOP when
deleting a null pointer is now gray.

Verification results may change when compared to previous versions of the
software.

Change to IDP Check When Accessing a Field of an Inherited Class
(C). Verification no longer reports a red IDP check when accessing a field of
an inherited class with an mcpu target.

In previous releases, verification reported a red IDP check.

For example:

struct Val {
int val;

};

struct Left : virtual Val {
int left;
virtual int get_left() { return left; } // polymorphic:yes

};

struct Right : virtual Val {
int right;
virtual int get_right() { return right; }

};

struct S : Left, Right { // multiple:yes
};

S s = S();
Left& le = s; // intermediate:global, reference:yes
Right& re = s; // intermediate:global, reference:yes

int main(void){

121

Polyspace® Release Notes

assert(re.val == 0); // Unexpected red IDP
}

However, this was not actually an error. The check is no longer red.

The color of the IDP check has changed when compared to previous versions
of the software.

Changes to Coding Rules Checker Results

• “Compatibility Considerations” on page 122

• “MISRA-C Rule 10.1 Violations on Constant Operands” on page 122

• “MISRA-C Rule 12.5 Violation Report Improved” on page 123

• “MISRA-C Rule 7.1 Violations on File Names of Preprocessed Files” on
page 123

• “MISRA-C Rule 5.4 Violations on Anonymous Structures and Unions” on
page 123

• “JSF Rule AV-151 Violations on Evaluation of Constant” on page 123

Compatibility Considerations. Due to changes in the coding rules checker,
the number of coding rule violations may change when compared to previous
versions of the software.

Refer to the following sections for information on the specific changes.

MISRA-C Rule 10.1 Violations on Constant Operands. The MISRA-C
checker no longer reports errors for rule 10.1, “The value of an expression of
integer type shall not be implicitly converted to a different underlying type,”
for certain constructions. For example:

int i;
for (i = 0; i < 12; i++)

An integer constant that fits into the size of a char is now seen as a signed
char whatever the sign of char (this depends on the selected target or is
set by option).

122

Version 7.2 (R2010a) Polyspace® for C/C++ Products

If you use the options -target powerpc or -default-sign-of-char
unsigned, the coding rules checker will report fewer violations of MISRA-C
rule 10.1 on constant operands.

MISRA-C Rule 12.5 Violation Report Improved. The coding rules checker
now reports a column number for violations of MISRA-C rule 12.5.

You may see more violations of rule 12.5, since two violations that occur on
same line but in different columns are now identified separately.

MISRA-C Rule 7.1 Violations on File Names of Preprocessed Files.
The coding rules checker no longer reports violations of MISRA-C rule 7.1
on the names of internal preprocessing files. These violations occurred in
projects containing Japanese characters.

You may see fewer violations of rule 7.1 in MISRA reports.

MISRA-C Rule 5.4 Violations on Anonymous Structures and Unions.
The coding rules checker no longer reports violations of MISRA-C rule 5.4 on
anonymous struct/union fields.

You may see fewer violations of rule 5.4 in MISRA reports.

JSF Rule AV-151 Violations on Evaluation of Constant. The coding rules
checker no longer reports violations of JSF rule AV-151 on internal evaluation
of a constant value, for example when there is an expression in an enum list.

You may see fewer violations of rule AV-151 in JSF reports.

Enumerated Types Support
The option -enum-type-definition allows verification to use different base
types to represent an enumerated type, depending on the enumerator values
and the selected definition.

When using this option, each enum type is represented by the smallest
integral type that can hold all its enumeration values.

Possible values are:

123

Polyspace® Release Notes

• defined-by-standard.

• auto-signed-first.

• auto-unsigned-first

For more information, see “Enum type definition (-enum-type-definition)”
in the Polyspace Products for C/C++ Reference or Polyspace Products for
C++ Reference.

New Target Processor Support
Added support for the c18 24-bit target processor (C only).

For more information, see “Predefined Target Processor Specifications” in
the Polyspace Products for C/C++ User’s Guide or Polyspace Products for
C++ User’s Guide.

Operating System Support
Added support for the following Linux® distributions:

• OpenSuSE 11.1

• Debian 5.x

• Ubuntu 8.04, 8.10, 9.04, and 9.10

For more information, see the Polyspace Installation Guide.

Polyspace Server for C/C++ Product

License Activation
Polyspace products now support the MathWorks software activation
mechanism.

Activation is a process that verifies licensed use of MathWorks products.
The process validates your product licenses and ensures that they are used
correctly. You must complete the activation process before you can use
Polyspace software.

124

Version 7.2 (R2010a) Polyspace® for C/C++ Products

Note If you are using Designated Computer (Individual) licenses, you must
activate the license for each Polyspace system individually. However, if you
are using Concurrent licenses for multiple Polyspace systems, you do not
need to activate each Polyspace system. You activate the license once (for the
FLEXnet license server), then provide license files for each Polyspace system.

The easiest way to activate the software is to log in to your MathWorks
Account during installation. At the end of the installation process, the
Polyspace Software Activation dialog box opens.

Follow the prompts in the Polyspace Software Activation dialog box to
complete the activation process.

If you do not have a MathWorks account, you can create one during the
activation process. To create an account, you must have an Activation Key,
which identifies the license you want to install and activate.

If your Polyspace system is not connected to the internet, you can access the
MathWorks License Center on a computer with internet access, activate your
license, and download a license file for transfer to your Polyspace system. If

125

Polyspace® Release Notes

you do not have access to a computer with an Internet connection, contact
Customer Support.

For more information on how to activate your software, see “Activating
Polyspace Software”in the Polyspace Installation Guide.

For more information on software activation, including frequently asked
questions, refer to the MathWorks Web site:
www.mathworks.com/support/activation/polyspace.html

Queue Manager Interface
The Polyspace Queue Manager Interface (Spooler) is now available on Linux
machines, providing a graphical interface for managing verification jobs on
the Polyspace server.

For more information, see “Managing Verification Jobs Using the Polyspace
Queue Manager”in the Polyspace Products for C/C++ User’s Guide or
Polyspace Products for C++ User’s Guide.

Operating System Support
Added support for the following Linux distributions:

• OpenSuSE 11.1

• Debian 5.x

• Ubuntu 8.04, 8.10, 9.04, and 9.10

For more information, see the Polyspace Installation Guide.

126

http://www.mathworks.com/support/activation/polyspace.html

Version 5.5 (R2010a) Polyspace® for Ada and Model Link Products

Version 5.5 (R2010a) Polyspace for Ada and Model Link
Products

This table summarizes what’s new in V5.5 (R2010a):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Includes fixes:
Polyspace Client for Ada Bug
Reports
Polyspace Server for Ada Bug
Reports
Polyspace Model Link SL Bug
Reports
Polyspace Model Link TL Bug
Reports
Polyspace UML Link RH Bug
Reports

New features and changes introduced in this version are organized by product:

• “Polyspace® Client for Ada Product” on page 127

• “Polyspace® Server for Ada Product” on page 130

• “Polyspace Model Link SL Product” on page 132

Polyspace Client for Ada Product

License Activation
Polyspace products now support the MathWorks software activation
mechanism.

Activation is a process that verifies licensed use of MathWorks products.
The process validates your product licenses and ensures that they are used
correctly. You must complete the activation process before you can use
Polyspace software.

127

http://www.mathworks.com/support/bugreports/?product=PA&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PA&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PA&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PG&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PG&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PH&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PH&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PI&release=R2010a
http://www.mathworks.com/support/bugreports/?product=PI&release=R2010a

Polyspace® Release Notes

Note If you are using Designated Computer (Individual) licenses, you must
activate the license for each Polyspace system individually. However, if you
are using Concurrent licenses for multiple Polyspace systems, you do not
need to activate each Polyspace system. You activate the license once (for the
FLEXnet license server), then provide license files for each Polyspace system.

The easiest way to activate the software is to log in to your MathWorks
Account during installation. At the end of the installation process, the
Polyspace Software Activation dialog box opens.

Follow the prompts in the Polyspace Software Activation dialog box to
complete the activation process.

If you do not have a MathWorks account, you can create one during the
activation process. To create an account, you must have an Activation Key,
which identifies the license you want to install and activate.

If your Polyspace system is not connected to the internet, you can access the
MathWorks License Center on a computer with internet access, activate your
license, and download a license file for transfer to your Polyspace system. If

128

Version 5.5 (R2010a) Polyspace® for Ada and Model Link Products

you do not have access to a computer with an Internet connection, contact
Customer Support.

For more information on how to activate your software, see “Activating
Polyspace Software”in the Polyspace Installation Guide.

For more information on software activation, including frequently asked
questions, refer to the MathWorks Web site:
www.mathworks.com/support/activation/polyspace.html

Source Code Comment Support
Polyspace software now allows you to place comments in your code that
provide information about known run-time errors. You can use these
comments to highlight and categorize previously identified run-time errors.
This information can then make the review process quicker and easier.

When you review verification results, the Viewer displays comments on
individual checks. You can then skip these commented checks during the
review process, or simply use them as additional information during your
review.

For more information, see “Highlighting Known Run-Time Errors” in the
Polyspace Products for Ada User’s Guide.

Eclipse Integration
Polyspace integration with the Eclipse IDE, Version 3.4 and 3.5.

The Polyspace Client for Ada can be integrated with the Eclipse™ Integrated
Development Environment through the Polyspace plug-in for Eclipse IDE.

This plug-in provides Polyspace source code verification and bug detection
functionality for source code developed within Eclipse IDE. Features include
the following:

• A contextual menu that allows you to launch a verification of one or more
files.

• Views in the Eclipse editor that allow you to set verification parameters
and monitor verification progress.

129

http://www.mathworks.com/support/activation/polyspace.html

Polyspace® Release Notes

For more information, see “Using Polyspace Software in the Eclipse™ IDE”
in the Polyspace Products for Ada User’s Guide.

Operating System Support
Added support for the following Linux distributions:

• OpenSuSE 11.1

• Debian 5.x

• Ubuntu 8.04, 8.10, 9.04, and 9.10

For more information, see the Polyspace Installation Guide.

Polyspace Server for Ada Product

License Activation
Polyspace products now support the MathWorks software activation
mechanism.

Activation is a process that verifies licensed use of MathWorks products.
The process validates your product licenses and ensures that they are used
correctly. You must complete the activation process before you can use
Polyspace software.

Note If you are using Designated Computer (Individual) licenses, you must
activate the license for each Polyspace system individually. However, if you
are using Concurrent licenses for multiple Polyspace systems, you do not
need to activate each Polyspace system. You activate the license once (for the
FLEXnet license server), then provide license files for each Polyspace system.

The easiest way to activate the software is to log in to your MathWorks
Account during installation. At the end of the installation process, the
Polyspace Software Activation dialog box opens.

130

Version 5.5 (R2010a) Polyspace® for Ada and Model Link Products

Follow the prompts in the Polyspace Software Activation dialog box to
complete the activation process.

If you do not have a MathWorks account, you can create one during the
activation process. To create an account, you must have an Activation Key,
which identifies the license you want to install and activate.

If your Polyspace system is not connected to the internet, you can access the
MathWorks License Center on a computer with internet access, activate your
license, and download a license file for transfer to your Polyspace system. If
you do not have access to a computer with an Internet connection, contact
Customer Support.

For more information on how to activate your software, see “Activating
Polyspace Software”in the Polyspace Installation Guide.

For more information on software activation, including frequently asked
questions, refer to the MathWorks Web site:
www.mathworks.com/support/activation/polyspace.html

131

http://www.mathworks.com/support/activation/polyspace.html

Polyspace® Release Notes

Queue Manager Interface
The Polyspace Queue Manager Interface (Spooler) is now available on Linux
machines, providing a graphical interface for managing verification jobs on
the Polyspace server.

For more information, see “Managing Verification Jobs Using Polyspace
Queue Manager”in the Polyspace Products for Ada User’s Guide.

Operating System Support
Added support for the following Linux distributions:

• OpenSuSE 11.1

• Debian 5.x

• Ubuntu 8.04, 8.10, 9.04, and 9.10

For more information, see the Polyspace Installation Guide.

Polyspace Model Link SL Product

License Activation
Polyspace products now support the MathWorks software activation
mechanism.

Activation is a process that verifies licensed use of MathWorks products.
The process validates your product licenses and ensures that they are used

132

Version 5.5 (R2010a) Polyspace® for Ada and Model Link Products

correctly. You must complete the activation process before you can use
Polyspace software.

Note If you are using Designated Computer (Individual) licenses, you must
activate the license for each Polyspace system individually. However, if you
are using Concurrent licenses for multiple Polyspace systems, you do not
need to activate each Polyspace system. You activate the license once (for the
FLEXnet license server), then provide license files for each Polyspace system.

The easiest way to activate the software is to log in to your MathWorks
Account during installation. At the end of the installation process, the
Polyspace Software Activation dialog box opens.

Follow the prompts in the Polyspace Software Activation dialog box to
complete the activation process.

If you do not have a MathWorks account, you can create one during the
activation process. To create an account, you must have an Activation Key,
which identifies the license you want to install and activate.

133

Polyspace® Release Notes

If your Polyspace system is not connected to the internet, you can access the
MathWorks License Center on a computer with internet access, activate your
license, and download a license file for transfer to your Polyspace system. If
you do not have access to a computer with an Internet connection, contact
Customer Support.

For more information on how to activate your software, see “Activating
Polyspace Software”in the Polyspace Installation Guide.

For more information on software activation, including frequently asked
questions, refer to the MathWorks Web site:
www.mathworks.com/support/activation/polyspace.html

Data Range Specifications for Custom Simulink Data Objects
Polyspace Model Link SL software now accepts every Simulink or mpt object
containing min and max values.

In previous releases, the software did not create DRS entries for custom
Simulink Data Objects, only for Simulink.Parameter, mpt.Parameter,
Simulink.Signal, and mpt.Signal.

Compatibility Considerations. Verification results may change when
compared to previous versions of the software, due to data ranges being
applied to additional objects.

Simulink Software Support
Added support for Simulink Version 7.5 (R2010a).

134

http://www.mathworks.com/support/activation/polyspace.html

Version 7.1 (R2009b) Polyspace® for C/C++ Products

Version 7.1 (R2009b) Polyspace for C/C++ Products
This table summarizes what’s new in V7.1 (R2009b):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Includes fixes:
Polyspace Client for C/C++
Bug Reports
Polyspace Server for C/C++
Bug Reports

New features and changes introduced in this version are organized by product:

• “Polyspace® Client for C/C++ Product” on page 135

• “Polyspace® Server for C/C++ Product” on page 140

Polyspace Client for C/C++ Product

Report Generator
New Report Generator that presents Polyspace results in PDF, HTML, and
other output formats.

The Polyspace Report Generator allows you to generate reports about your
verification results, using the following predefined report templates:

• Coding Rules Report – Provides information about compliance with
MISRA-C Coding Rules, as well as Polyspace configuration settings for
the verification.

• Developer Report – Provides information useful to developers, including
summary results, detailed lists of red, orange, and gray checks, and
Polyspace configuration settings for the verification.

• Developer with Green Checks Report – Provides the same content as
the Developer Report, but also includes a detailed list of green checks.

135

http://www.mathworks.com/support/bugreports/?product=PC&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PC&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PC&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2009b

Polyspace® Release Notes

• Quality Report – Provides information useful to quality engineers,
including summary results, statistics about the code, graphs showing
distributions of checks per file, and Polyspace configuration settings for
the verification.

The Polyspace Report Generator allows you to generate verification reports in
the following formats:

• HTML

• PDF

• RTF

• Microsoft Word

• XML

Note Microsoft Word format is not available on UNIX platforms. RTF format
is used instead.

For more information, see “Generating Reports of Verification Results” in
the Polyspace Products for C/C++ User’s Guide or Polyspace Products for
C++ User’s Guide.

Viewer Enhancements
Enhanced Viewer displays results with tooltips containing the values of
variables, operands, function parameters, and return values.

You can see range information associated with variables and operators within
the source code view.

Note The displayed range information represents a superset of dynamic
values, which the software computes using static methods.

136

Version 7.1 (R2009b) Polyspace® for C/C++ Products

If a line of code is all the same color, selecting the line opens an Expanded
Source Code window. Place your cursor over the required operator or variable
in this window to view range information.

If a line of code contains different colored checks, selecting a check displays
the error or warning message along with range information in the selected
check view.

For more information, see “Using Range Information in Run-Time Checks
Perspective” in the Polyspace Products for C/C++ User’s Guide or Polyspace
Products for C++ User’s Guide.

Global Data Graphs
New Graphs (similar to concurrent access graphs) available for all global data.

You can display the access sequence for any variable that is read or written in
the code. The access graph displays the read and write access for the variable.

For more information, see “Displaying the Access Graph for Variables” in
the Polyspace Products for C/C++ User’s Guide or Polyspace Products for
C++ User’s Guide.

Unit-by-unit Verification
New option to create a separate verification job for each source file in the
project.

When you run a unit-by-unit verification, each source file is compiled, sent
to the Polyspace Server, and verified individually.

The queue manager displays a job for the full verification group, as well as
jobs for each unit (using a tree structure).

When verification is complete, you can download and view results for the
entire project, or for individual units. When downloading a verification group,
all the unit results are downloaded and a summary of the download status for
each unit is displayed.

137

Polyspace® Release Notes

Note Unit by unit verification is available only for server verifications.

For more information, see “Running Verification Unit-by-Unit” in the
Polyspace Products for C/C++ Reference or Polyspace Products for C++
Reference.

Changes to Coding Rules Checker Results

• “Compatibility Considerations” on page 138

• “MISRA-C Rule 5.1 Analysis Improved” on page 138

• “MISRA-C Rule 5.2 Analysis Improved” on page 138

• “MISRA-C Rule 5.7 Analysis Improved” on page 139

• “MISRA-C Rule 8.10 Analysis Improved” on page 139

• “MISRA-C Rule 10.1 Analysis Relaxed” on page 139

• “MISRA-C Rule 10.5 Analysis Improved” on page 139

• “MISRA-C Rule 12.7 Analysis Improved” on page 139

• “MISRA-C Rule 15.0 Analysis Improved” on page 139

• “MISRA-C Rule 16.4 Analysis Improved” on page 139

Compatibility Considerations. Due to changes in the coding rules checker,
the number of coding rule violations may change when compared to previous
versions of the software.

Refer to the following sections for information on the specific changes.

MISRA-C Rule 5.1 Analysis Improved. The coding rules checker now
applies MISRA-C rule 5.1 to all identifiers external and internal.

MISRA-C Rule 5.2 Analysis Improved. The coding rules checker now
detects violations of MISRA-C Rule 5.2 when the declaration in the outer
scope occurs after the declaration in the inner scope.

138

Version 7.1 (R2009b) Polyspace® for C/C++ Products

MISRA-C Rule 5.7 Analysis Improved. The coding rules checker now
detects violations of MISRA-C Rule 5.7 in local reused identifiers.

MISRA-C Rule 8.10 Analysis Improved. Only the last declaration takes
precedence for static or extern. The coding rules checker no longer reports
violations of MISRA-C Rule 8.10 if the last declaration is static.

MISRA-C Rule 10.1 Analysis Relaxed. The coding rules checker has
relaxed enforcement of MISRA-C Rule 10.1 for x in [x] for any type of
expression x.

MISRA-C Rule 10.5 Analysis Improved. The coding rules checker now
detects violations of MISRA-C Rule 10.5 in expressions with constants.

For example:

c = (uint8_t)(ui8 << (1U << 2U));

MISRA-C Rule 12.7 Analysis Improved. The coding rules checker now
detects violations of MISRA-C Rule 12.7 in expressions with constants.

For example:

~(i=1);

MISRA-C Rule 15.0 Analysis Improved. The coding rules checker now
detects violations of MISRA-C Rule 15.0 in all statements between switch and
first case clause (label, harmless statement).

In addition the coding rules checker now detects jumps and label statements.

MISRA-C Rule 16.4 Analysis Improved. The coding rules checker now
keeps the names of the parameters of the first declaration, and reports
violations of MISRA-C Rule 16.4 for each occurrence.

Operating System Support
Added support for Windows Server® 2008.

For more information, see the Polyspace Installation Guide.

139

Polyspace® Release Notes

Polyspace Server for C/C++ Product

Operating System Support
Added support for Windows Server 2008.

For more information, see the Polyspace Installation Guide.

140

Version 5.4 (R2009b) Polyspace® for Ada and Model Link Products

Version 5.4 (R2009b) Polyspace for Ada and Model Link
Products

This table summarizes what’s new in V5.4 (R2009b):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Includes fixes:
Polyspace Client for Ada Bug
Reports
Polyspace Server for Ada Bug
Reports
Polyspace Model Link SL Bug
Reports
Polyspace Model Link TL Bug
Reports
Polyspace UML Link RH Bug
Reports

New features and changes introduced in this version are organized by product:

• “Polyspace® Client for Ada Product” on page 141

• “Polyspace® Server for Ada Product” on page 148

• “Polyspace Model Link SL Product” on page 148

Polyspace Client for Ada Product

Report Generator
New Report Generator that presents Polyspace results in PDF, HTML, and
other output formats.

The Polyspace Report Generator allows you to generate reports about your
verification results, using the following predefined report templates:

141

http://www.mathworks.com/support/bugreports/?product=PA&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PA&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PA&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PG&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PG&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PH&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PH&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PI&release=R2009b
http://www.mathworks.com/support/bugreports/?product=PI&release=R2009b

Polyspace® Release Notes

• Coding Rules Report – Provides information about compliance with
MISRA-C Coding Rules, as well as Polyspace configuration settings for
the verification.

• Developer Report – Provides information useful to developers, including
summary results, detailed lists of red, orange, and gray checks, and
Polyspace configuration settings for the verification.

• Developer with Green Checks Report – Provides the same content as
the Developer Report, but also includes a detailed list of green checks.

• Quality Report – Provides information useful to quality engineers,
including summary results, statistics about the code, graphs showing
distributions of checks per file, and Polyspace configuration settings for
the verification.

The Polyspace Report Generator allows you to generate verification reports in
the following formats:

• HTML

• PDF

• RTF

• Microsoft Word

• XML

Note Microsoft Word format is not available on UNIX platforms. RTF format
is used instead.

For more information, see “Generating Reports of Verification Results” in the
Polyspace Products for Ada User’s Guide .

Main Generator Enhancements
Enhanced main generator that considers the scope of a procedure and
variable, improving error detection at the package level.

This change may affect your results compared with previous releases, and
how you interpret the new results. Specific changes include:

142

Version 5.4 (R2009b) Polyspace® for Ada and Model Link Products

• Uninitialized package body variables are considered uninitialized

• Uncalled package-scope procedures/functions are considered unreachable

• Functions/procedures declared at the spec level are called only once

• Uninitialized spec level variables are considered possibly uninitialized

For more information on the main generator, see “Main Generator Overview”
in the Polyspace Products for Ada User’s Guide .

Uninitialized Package Body Variables are Considered Uninitialized .
Uninitialized variables that are declared only in the package body are now
considered uninitialized, and generate red NIV checks.

Previously, these variables were considered initialized (green NIV) with
full-range values. This behaviour made interpretation of results easier and
allowed verification to continue. However, the software now considers these
variables uninitialized (red NIV) and stops verification at this point. This new
behaviour is more accurate with respect to the actual initialization state of
the variables. You must correct the code before verification can continue.
Alternatively, you can use the option -continue-with-all-niv.

143

Polyspace® Release Notes

Uncalled Package-scope Procedures/Functions are Considered
Unreachable . Procedures and functions that are declared in the package
but not called by code within the package body provided for the verification
will now be considered unreachable (gray).

Previously, all procedures and functions in a package were considered for
verification and subsequently colored. The argument for this behavior was
that these functions and procedures could be called by code inside the package
that had not been provided for the verification. Now, the software considers
this code unreachable (gray) unless there is a path of execution that leads to it.

144

Version 5.4 (R2009b) Polyspace® for Ada and Model Link Products

Functions/Procedures Declared at the Spec Level are Called Only
Once. Functions or procedures declared at the specification level are called
only once.

Note This behavior changed in Release 2010a. In R2010a or later, the main
generator can call a function several times.

Uninitialized Spec Level Variables are Considered Possibly
Uninitialized. Uninitialized variables declared in a package specification
will now be considered possibly uninitialized (orange NIV). Previously, these
variables were considered initialized (green NIV) with full-range values.

The software now considers uninitialized variables that are declared only
in the package body as uninitialized (red NIV). However, for uninitialized
variables declared in a package specification, it is possible that packages

145

Polyspace® Release Notes

that use these variables may initialize these variables. The software now
recognizes this possibility and generates orange NIV checks for uninitialized
variables declared in a package specification.

This behavior is not changed if you use options -init-stubbing-vars-random
or -init-stubbing-vars-zero-or-random to initialize uninitialized
variables. Specification-level variables will still be considered possibly
uninitialized (orange NIV), because the packages that use these variables can
alter the variables, even to the extent of uninitializing the variables.

Compatibility Considerations. Changes to the main generator may result
in differences in your verification results, when compared with earlier
versions of the software. If you verified your code with previous versions of
the software (for example, R2009a), be aware of these changes, how they
affect your colored results and the way you interpret the results.

146

Version 5.4 (R2009b) Polyspace® for Ada and Model Link Products

Global Data Graphs
New Graphs (similar to concurrent access graphs) available for all global data.

You can display the access sequence for any variable that is read or written in
the code. The access graph displays the read and write access for the variable.

For more information, see “Displaying the Access Graph for Variables” in the
Polyspace Products for Ada User’s Guide .

Unit-by-unit Verification
New option to create a separate verification job for each source file in the
project.

When you run a unit-by-unit verification, each source file is compiled, sent
to the Polyspace Server, and verified individually.

The queue manager displays a job for the full verification group, as well as
jobs for each unit (using a tree structure).

When verification is complete, you can download and view results for the
entire project, or for individual units. When downloading a verification group,
all the unit results are downloaded and a summary of the download status for
each unit is displayed.

Note Unit by unit verification is available only for server verifications.

For more information, see “Running Verification Unit-by-Unit” in the
Polyspace Products for Ada Reference.

Operating System Support
Added support for Windows Server 2008.

For more information, see the Polyspace Installation Guide.

147

Polyspace® Release Notes

Polyspace Server for Ada Product

Operating System Support
Added support for Windows Server 2008.

For more information, see the Polyspace Installation Guide.

Polyspace Model Link SL Product

Simulink Software Support
Added support for Simulink Version 7.4 (R2009b).

148

Version 7.0 (R2009a) Polyspace® for C/C++ Products

Version 7.0 (R2009a) Polyspace for C/C++ Products
This table summarizes what’s new in V7.0 (R2009a):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Includes fixes:
Polyspace Client for C/C++
Bug Reports
Polyspace Server for C/C++
Bug Reports

New features and changes introduced in this version are organized by product:

• “Polyspace® Client for C/C++ Product” on page 149

• “Polyspace® Server for C/C++ Product” on page 154

Polyspace Client for C/C++ Product

JSF++ Support
Enhanced JSF C++ checker supports all checkable Joint Strike Fighter Air
Vehicle C++ coding standards (JSF++:2005).

Polyspace software can now check all possible C++ programming rules defined
by Lockheed Martin® for the JSF program. These coding standards are
designed to improve the robustness of C++ code, and improve maintainability.

For more information, see “Checking Coding Rules”, in the Polyspace Products
for C++ User’s Guide.

Back to Source Link
New “back-to-source” link in the Polyspace launcher associates compile
errors, MISRA-C violations, and JSF++ violations reported in the logs directly
to the source file.

149

http://www.mathworks.com/support/bugreports/?product=PC&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PC&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PC&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2009a

Polyspace® Release Notes

For more information, see “Viewing Coding Rules Checker Results”in the
Polyspace Products for C/C++ User’s Guide or “Examining Rule Violations”,
in the Polyspace Products for C++ User’s Guide.

Eclipse Integration
New Polyspace integration with the Eclipse IDE, Version 3.3.

The Polyspace Client for C/C++ product can be integrated with the Eclipse
Integrated Development Environment through the Polyspace C/C++ plug-in
for Eclipse IDE.

This plug-in provides Polyspace source code verification and bug detection
functionality for source code developed within Eclipse IDE. Features include
the following:

• A contextual menu that allows you to launch a verification of one or more
files.

• Views in the Eclipse editor that allow you to set verification parameters
and monitor verification progress.

For more information, see “Using Polyspace Software in the Eclipse IDE” in
the Polyspace Products for C/C++ User’s Guideor
“Using Polyspace Software in the Eclipse IDE”in the Polyspace Products for
C++ User’s Guide.

Performance Improvements for Multi-Core Systems
Enhanced performance on multi-core architecture platforms, improving the
speed of Polyspace code verification.

The time required to perform an average code verification has been reduced.
On multi-core systems, you can now select the number of processes that can
run simultaneously, further improving performance.

For more information, see “Number of processes for multiple CPU core
systems (-max-processes)” in the Polyspace Products for C/C++ Referenceor
Polyspace Products for C++ Reference.

150

Version 7.0 (R2009a) Polyspace® for C/C++ Products

Architecture Improvements
Several changes have been made to the Polyspace architecture to improve
overall performance, as well as the precision of verification results.

During each verification phase (pass), the software now only analyzes those
procedures that need to be analyzed. This means that starting with PASS1,
if the verification cannot be more precise than that already completed in a
previous pass, the procedure is not analyzed again. This improves the overall
performance of the verification. It also means that some passes will finish
more quickly than others, and some passes could be completely empty. This is
normal behavior.

In addition, these architecture improvements result in the following changes:

• The quick precision option is now obsolete, and has been removed. quick
mode has been replaced with verification PASS0. PASS0 takes somewhat
longer to run, but the results are more complete. The limitations of quick
mode, (no NTL or NTC checks, no float checks, no variable dictionary) no
longer apply. Unlike quick mode, PASS0 also provides full navigation in
the Viewer.

• The voa option is now obsolete, and has been removed. Value On
Assignment checks are now provided by default. In general, this means
that Polyspace results now contain many more VOA checks. For C
applications, all possible VOA are given.

• The UOVFL (Float Underflows and Overflows) check no longer exists.
Float underflows and overflows are now reported as two separate checks.
This is similar to the way integers are handled.

Note Since the single UOVFL check has been replaced by two checks,
the total number of checks reported by Polyspace on a given file may be
different in this release than with previous versions of the software.

• Messages have been improved for float arithmetic checks, making them
similar to the messages for integers. For example, NIV checks on float
variables now contain the type size (32 or 64).

151

Polyspace® Release Notes

• For IPT (Inspection Point) checks, there is now one check for each variable.
Previously there was a single IPT check (on the keyword) for multiple
variables.

• The log file has several additions, including the names of each PASS, the
verification phases, and additional messages.

Compatibility Considerations. The verification results provided by
Polyspace software may be different in R2009a than with previous releases
of the software. Verification results are more precise, and the total number
of checks reported on a given source file may be different. In general, the
software now reports more checks, due to increased VOA checks, changes
to the IPT check, and the single float UOVFL check being replaced by two
checks (UNFL and OVFL).

In addition, due to the float UOVFL check being split into two checks, the
selectivity (number of proven checks red+green+gray / number of total checks)
of a verification may change significantly for applications using many float
variables. For example, an application that had 10 orange UOVFL checks
with a previous release, could now have up to 20 orange UNFL and OVFL
checks on the same float variables. Although this appears to be a decrease in
precision, the verification itself is not less precise.

Mathematical Functions Included in Stubs
Mathematical functions are now included in the standard stubs. This means:

• An IRV (Initialized Return Value) check appears on the math function call.

• The POW check no longer appears in the Viewer.

• Math functions appear in the call graph.

• The modeling of mathematical functions is visible through the stub body,
instead of being handled internally.

• By default, math functions are launched with the option
-context-sensitivity , allowing them to distinguish their calling sites.

In addition, you can provide your own math functions instead of using the
standard stub provided by Polyspace software. This allows the software to
verify the body of the math function, instead of using a stub for the math
function.

152

Version 7.0 (R2009a) Polyspace® for C/C++ Products

For example, in C90, the mathematical function fabs() has the prototype:

double fabs(double) ;

However, on a 16-bit target, the function may have the prototype:

float fabs(float);

In this case, you would want to verify your own fabs() function.

To provide your own math function:

1 Create source code for the function. For example:

float fabs (float var)
{

if (var >= 0.0f)
return var;

return -var;
}

2 Provide the function to your verification using the D compiler flag. For
example:

polyspace-c -D __polyspace_no_fabs

Note There is a compiler flag for each standard ANSI C90
mathematical function. A complete list of flags is located in the file:
%POLYSPACE_C%\Verifier\cinclude__polyspace__stdstubs.c.

Compatibility Considerations. Since the POW check no longer appears in
the Viewer, verification results may be different in R2009a than with previous
releases of the software.

Character Encoding Options
New character encoding option allows you to view source files created on an
operating system that uses different character encoding than your current
system.

153

Polyspace® Release Notes

You specify the character encoding used by the operating system on which the
source file was created using the Character encoding tab in the Preferences
dialog box of the Polyspace Viewer.

For more information, see “Setting Character Encoding Preferences”in the
Polyspace Products for C/C++ User’s Guideor Polyspace Products for C++
User’s Guide.

Automatic Orange Tester
The Automatic Orange Tester (for C), dynamically stresses unproven code
(orange checks) to help you identify run-time errors.

For more information, see “Automatically Testing Orange Code” in the
Polyspace Products for C/C++ User’s Guide.

Compatibility Considerations. If you open verification results created
with an older version of the product in the Automatic Orange Tester, you
may get a compilation error. The version of the product used to create the
instrumented source code must be the same as the one used for analysis in
the Automatic Orange Tester.

To avoid this problem, re-launch the code verification with the current version
of the product.

Operating System Support
Added support for Windows Server 2003, Windows Vista™, and Red Hat
Enterprise Linux Workstation v.5.

For more information, see the Polyspace Installation Guide.

Polyspace Server for C/C++ Product

Performance Improvements for Multi-Core Systems
Enhanced performance on multi-core architecture platforms, improving the
speed of Polyspace code verification.

154

Version 7.0 (R2009a) Polyspace® for C/C++ Products

The time required to perform an average code verification has been reduced.
On multi-core systems, you can now select the number of processes that can
run simultaneously, further improving performance.

For more information, see “Number of processes for multiple CPU core
systems (-max-processes)” in the Polyspace Products for C/C++ Referenceor
Polyspace Products for C++ Reference.

Architecture Improvements
Several changes have been made to the Polyspace architecture to improve
overall performance, as well as the precision of verification results.

During each verification phase (pass), the software now only analyzes those
procedures that need to be analyzed. This means that starting with PASS1,
if the verification cannot be more precise than that already completed in a
previous pass, the procedure is not analyzed again. This improves the overall
performance of the verification. It also means that some passes will finish
more quickly than others, and some passes could be completely empty. This is
normal behavior.

In addition, these architecture improvements result in the following changes:

• The quick precision option is now obsolete, and has been removed. quick
mode has been replaced with verification PASS0. PASS0 takes somewhat
longer to run, but the results are more complete. The limitations of quick
mode, (no NTL or NTC checks, no float checks, no variable dictionary) no
longer apply. Unlike quick mode, PASS0 also provides full navigation in
the Viewer.

• The voa option is now obsolete, and has been removed. Value On
Assignment checks are now provided by default. In C, all possible VOA
are given.

• The UOVFL (Float Underflows and Overflows) check no longer exists.
Float underflows and overflows are now reported as two separate checks.
This is similar to the way integers are handled.

155

Polyspace® Release Notes

Note Since the single UOVFL check has been replaced by two checks,
the total number of checks reported by Polyspace on a given file may be
different in this release than with previous versions of the software.

• Messages have been improved for float arithmetic checks, making them
similar to the messages for integers. For example, NIV checks on float
variables now contain the type size (32 or 64).

• For IPT (Inspection Point) checks, there is now one check for each variable.
Previously there was a single IPT check (on the keyword) for multiple
variables.

• The log file has several additions, including the names of each PASS, the
verification phases, and additional messages.

Compatibility Considerations. The verification results provided by
Polyspace software may be different in R2009a than with previous releases
of the software. Verification results are more precise, and the total number
of checks reported on a given source file may be different. In general, the
software now reports more checks, due to increased VOA checks, changes
to the IPT check, and the single float UOVFL check being replaced by two
checks (UNFL and OVFL).

In addition, due to the float UOVFL check being split into two checks, the
selectivity (number of proven checks red+green+gray / number of total checks)
of a verification may change significantly for applications using many float
variables. For example, an application that had 10 orange UOVFL checks
with a previous release, could now have up to 20 orange UNFL and OVFL
checks on the same float variables. Although this appears to be a decrease in
precision, the verification itself is not less precise.

Operating System Support
Added support for Windows Server 2003, Windows Vista, and Red Hat
Enterprise Linux Workstation v.5.

For more information, see the Polyspace Installation Guide.

156

Version 5.3 (R2009a) Polyspace® for Ada and Model Link Products

Version 5.3 (R2009a) Polyspace for Ada and Model Link
Products

This table summarizes what’s new in V5.3 (R2009a):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

No Includes fixes:
Polyspace Client for Ada Bug
Reports
Polyspace Server for Ada Bug
Reports
Polyspace Model Link SL Bug
Reports
Polyspace Model Link TL Bug
Reports
Polyspace UML Link RH Bug
Reports

New features and changes introduced in this version are organized by product:

• “Polyspace® Client for Ada Product” on page 157

• “Polyspace® Server for Ada Product” on page 158

• “Polyspace Model Link SL Product” on page 158

• “Polyspace UML Link RH Product” on page 159

Polyspace Client for Ada Product

Character Encoding Options
New character encoding option allows you to view source files created on an
operating system that uses different character encoding than your current
system.

You specify the character encoding used by the operating system on which the
source file was created using the Character encoding tab in the Preferences
dialog box of the Polyspace Viewer.

157

http://www.mathworks.com/support/bugreports/?product=PG&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PG&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PG&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PG&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PG&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PH&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PH&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PI&release=R2009a
http://www.mathworks.com/support/bugreports/?product=PI&release=R2009a

Polyspace® Release Notes

For more information, see “Setting Character Encoding Preferences” in the
Polyspace Products for Ada User’s Guide.

Operating System Support
Added support for Windows Server 2003, Windows Vista, and Red Hat
Enterprise Linux Workstation v.5.

For more information, see the Polyspace Installation Guide.

Polyspace Server for Ada Product

Operating System Support
Added support for Windows Server 2003, Windows Vista, and Red Hat
Enterprise Linux Workstation v.5.

For more information, see the Polyspace Installation Guide.

Polyspace Model Link SL Product

Polyspace Menu Option in Simulink
New option in the Simulink Tools menu to launch Polyspace software directly
from Simulink.

For more information, see “Running Verification with Polyspace Model Link
SL Software”in the Polyspace Model Link Products User’s Guide.

Manual Selection of Data Range Specifications (DRS) File
You can now manually select a Data Range Specification (DRS) file within
Simulink, instead of accepting the default DRS file.

For more information, see “Data Range Specification”in the Polyspace Model
Link Products User’s Guide.

Simulink Software Support
Added support for Simulink Version 7.3 (R2009a).

158

Version 5.3 (R2009a) Polyspace® for Ada and Model Link Products

Polyspace UML Link RH Product

Rhapsody Support
Added support for Telelogic Rhapsody Version 7.2 and 7.3.

159

Polyspace® Release Notes

Version 6.0 (R2008b) Polyspace for C/C++ Products
This table summarizes what’s new in V6.0 (R2008b):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

No Includes fixes:
Polyspace Client for C/C++
Bug Reports
Polyspace Server for C/C++
Bug Reports

New features and changes introduced in this version are organized by product:

• “Polyspace® Client for C/C++ Product” on page 160

• “Polyspace® Server for C/C++ Product” on page 161

Polyspace Client for C/C++ Product

Automatic Orange Tester
Automatic Orange Tester (for C), dynamically stresses unproven code (orange
checks) to identify run-time errors, and provides information to help you
identify the cause of these errors.

The Automatic Orange Tester complements the results review in the Viewer
module of Polyspace Client for C/C++ by automatically creating test cases
for all input variables in orange code, and then dynamically testing the
code to find actual runtime errors. The Automatic Orange Tester also
provides detailed information on why each test-case failed. You can use this
information to quickly identify the cause of the error, and determine if there
is an actual bug in the code.

For more information, see “Automatically Testing Orange Code” in the
Polyspace Products for C/C++ User’s Guide.

160

http://www.mathworks.com/support/bugreports/?product=PC&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PC&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PC&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PB&release=R2008b

Version 6.0 (R2008b) Polyspace® for C/C++ Products

JSF++ Support
Support for a subset of the Joint Strike Fighter Air Vehicle C++ coding
standards (JSF++:2005).

Polyspace software can now check 120 of the C++ programming rules defined
by Lockheed Martin for the JSF program. These coding standards are
designed to improve the robustness of C++ code, and improve maintainability.

For more information, see “Checking Coding Rules”, in the Polyspace Products
for C++ User’s Guide.

Operating System Support
Added support for 64–bit Linux.

For more information, see the Polyspace Installation Guide.

Polyspace Server for C/C++ Product

Operating System Support
Added support for 64–bit Linux.

For more information, see the Polyspace Installation Guide.

161

Polyspace® Release Notes

Version 5.2 (R2008b) Polyspace for Ada and Model Link
Products

This table summarizes what’s new in V5.2 (R2008b):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

No Includes fixes:
Polyspace Client for Ada Bug
Reports
Polyspace Server for Ada Bug
Reports
Polyspace Model Link SL Bug
Reports

New features and changes introduced in this version are organized by product:

• “Polyspace® Client for Ada Product” on page 162

• “Polyspace® Server for Ada Product” on page 162

• “Polyspace Model Link SL Product” on page 163

• “Polyspace Model Link TL Product” on page 163

• “Polyspace UML Link RH Product” on page 164

Polyspace Client for Ada Product

Operating System Support
Added support for 64–bit Linux.

For more information, see the Polyspace Installation Guide.

Polyspace Server for Ada Product

Operating System Support
Added support for 64–bit Linux.

162

http://www.mathworks.com/support/bugreports/?product=PG&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PG&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PG&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PF&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PG&release=R2008b
http://www.mathworks.com/support/bugreports/?product=PG&release=R2008b

Version 5.2 (R2008b) Polyspace® for Ada and Model Link Products

For more information, see the Polyspace Installation Guide.

Polyspace Model Link SL Product

Model Reference Support
Added support for Simulink Model Reference.

Polyspace Model Link SL software now automatically detects model references
in Simulink models, allowing you to quickly track any verification issues
back to the original model.

For more information, see the Polyspace Model Link Products User’s Guide.

Stateflow Chart Support
Added support for Stateflow® Charts within Simulink models.

Polyspace Model Link SL software now supports Stateflow Charts within
Simulink models, allowing you to quickly track any verification issues back to
the original Stateflow chart. In addition, any Stateflow comments are now
highlighted in the Polyspace source code view.

For more information, see the Polyspace Model Link Products User’s Guide.

Simulink Software Support
Added support for Simulink Version 7.2 (R2008b).

Operating System Support
Added support for 64–bit Linux.

For more information, see the Polyspace Installation Guide.

Polyspace Model Link TL Product

Operating System Support
Added support for 64–bit Linux.

163

Polyspace® Release Notes

For more information, see the Polyspace Installation Guide.

Polyspace UML Link RH Product

Ada Language Support
Added support for Ada language in Rhapsody software.

For more information, see the Polyspace UML Link RH User’s Guide.

Operating System Support
Added support for 64–bit Linux.

For more information, see the Polyspace Installation Guide.

164

Version 5.1 (R2008a) Polyspace® Software

Version 5.1 (R2008a) Polyspace Software
This table summarizes what’s new in V5.1 (R2008a):

New Features and Changes Version Compatibility
Considerations

Fixed Bugs and Known
Problems

Yes
Details below

Yes—Details labeled
as Compatibility
Considerations, below.
See also Summary.

Includes fixes:
Polyspace Client for C/C++
Bug Reports
Polyspace Server for C/C++
Bug Reports
Polyspace Client for Ada Bug
Reports
Polyspace Server for Ada Bug
Reports
Polyspace Model Link SL Bug
Reports

New features and changes introduced in this version are organized by product:

• “Polyspace® Client for Ada Product” on page 165

• “Polyspace® Server for Ada Product” on page 167

• “Polyspace® Client for C/C++ Product” on page 169

• “Polyspace® Server for C/C++ Product” on page 172

• “Polyspace Model Link SL Product” on page 173

• “Polyspace Model Link TL Product” on page 174

• “Polyspace UML Link RH Product” on page 175

Polyspace Client for Ada Product

Removed Cygwin Software Dependency for Windows
Platforms
Previous versions of Polyspace products used Cygwin™ emulation to run
UNIX® commands on Windows systems.

165

http://www.mathworks.com/support/bugreports/?product=PC&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PC&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PC&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PB&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PA&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PA&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PA&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PF&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PG&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PG&release=R2008a
http://www.mathworks.com/support/bugreports/?product=PG&release=R2008a

Polyspace® Release Notes

In version 5.1, the Cygwin software dependency has been removed. Removing
Cygwin simplifies the Polyspace product installation process while improving
the performance and robustness of the Polyspace Verification process.

Compatibility Considerations. Due to the Cygwin changes, Polyspace
Client for Ada Version 5.1 is not compatible with previous versions of
Polyspace products on Windows platforms. To avoid compatibility problems
on Windows platforms, you must upgrade all your Polyspace client and server
products at the same time.

If your Polyspace server is running on a Windows platform, the binary files
used for batch commands in previous releases will not work without Cygwin
software installed. In version 5.1, the software provides new .exe files for these
batch commands. However, these files are now located in a different location.

Commands Previous Location New Location

Standard PolyspaceInstallDir\
verifier\bin\

PolyspaceInstallDir\
verifier\wbin\

Remote
Launcher

Polyspace_Common\
RemoteLauncher\bin\

Polyspace_Common\
RemoteLauncher\wbin\

Viewer Polyspace_Common\
Viewer\bin\

Polyspace_Common\
Viewer\wbin\

If you wrote scripts using batch commands in previous releases, you must
modify the scripts to use the new commands.

In addition, if you used Cygwin shell scripts for postprocessing or target
compilation, those scripts will no longer run on version 5.1. To support
scripting, the Polyspace software now includes Perl. You can access Perl in:

PolyspaceInstallDir\verifier\tools\perl\win32\bin\perl.exe

Enhanced Installer
Version 5.1 includes an enhanced and simplified installer for all Polyspace
products. The installation process is now faster and easier to complete than
in previous releases.

166

Version 5.1 (R2008a) Polyspace® Software

For more information, see the Polyspace Installation Guide.

Viewer Improvements
Enhanced exploring capability in the viewer to provide more focused
information.

Unnecessary information has been eliminated from the Procedural Entities
(RTE) View and Call Tree View to improve usability.

Enhanced Compilation Checks
Enhanced compilation checks to stop verification only when a pointer to a
task is initiated or used, rather than when it is declared.

One-Click Enhancements
Enhanced Polyspace-In-One-Click options, to allow switching between
multiple projects using a browse history.

Operating System Support
Added support for the following operating systems:

• Solaris 2.10

• Windows XP x64 (32-bit mode)

For more information, see the Polyspace Installation Guide.

Polyspace Server for Ada Product

Removed Cygwin Software Dependency for Windows
Platforms
Previous versions of Polyspace products used Cygwin emulation to run UNIX
commands on Windows systems.

In version 5.1, the Cygwin software dependency has been removed. Removing
Cygwin simplifies the Polyspace product installation process while improving
the performance and robustness of the Polyspace Verification process.

167

Polyspace® Release Notes

Compatibility Considerations. Due to the Cygwin changes, Polyspace®
Server™ for Ada Version 5.1 is not compatible with previous versions of
Polyspace products on Windows platforms. To avoid compatibility problems
on Windows platforms, you must upgrade all your Polyspace client and server
products at the same time.

If your Polyspace server is running on a Windows platform, the binary files
used for batch commands in previous releases will not work without Cygwin
software installed. In version 5.1, the software provides new .exe files for these
batch commands. However, these files are now located in a different location.

Commands Previous Location New Location

Standard PolyspaceInstallDir\
verifier\bin\

PolyspaceInstallDir\
verifier\wbin\

Remote
Launcher

Polyspace_Common\
RemoteLauncher\bin\

Polyspace_Common\
RemoteLauncher\wbin\

Viewer Polyspace_Common\
Viewer\bin\

Polyspace_Common\
Viewer\wbin\

If you wrote scripts using batch commands in previous releases, you must
modify the scripts to use the new commands.

In addition, if you used Cygwin shell scripts for postprocessing or target
compilation, those scripts will no longer run on version 5.1. To support
scripting, the Polyspace software now includes Perl. You can access Perl in:

PolyspaceInstallDir\verifier\tools\perl\win32\bin\perl.exe

Enhanced Installer
Version 5.1 includes an enhanced and simplified installer for all Polyspace
products. The installation process is now faster and easier to complete than
in previous releases.

For more information, see the Polyspace Installation Guide.

Operating System Support
Added support for the following operating systems:

168

Version 5.1 (R2008a) Polyspace® Software

• Solaris 2.10

• Windows XP x64 (32-bit mode)

For more information, see the Polyspace Installation Guide.

Polyspace Client for C/C++ Product

Removed Cygwin Software Dependency for Windows
Platforms
Previous versions of Polyspace products used Cygwin emulation to run UNIX
commands on Windows systems.

In version 5.1, the Cygwin software dependency has been removed. Removing
Cygwin simplifies the Polyspace product installation process while improving
the performance and robustness of the Polyspace Verification process.

Compatibility Considerations. Due to the Cygwin changes, Polyspace
Client for C/C++ Version 5.1 is not compatible with previous versions of
Polyspace products on Windows platforms. To avoid compatibility problems
on Windows platforms, you must upgrade all your Polyspace client and server
products at the same time.

If your Polyspace server is running on a Windows platform, the binary files
used for batch commands in previous releases will not work without Cygwin
software installed. In version 5.1, the software provides new .exe files for these
batch commands. However, these files are now located in a different location.

Commands Previous Location New Location

Standard PolyspaceInstallDir\
verifier\bin\

PolyspaceInstallDir\
verifier\wbin\

Remote
Launcher

Polyspace_Common\
RemoteLauncher\bin\

Polyspace_Common\
RemoteLauncher\wbin\

Viewer Polyspace_Common\
Viewer\bin\

Polyspace_Common\
Viewer\wbin\

169

Polyspace® Release Notes

If you wrote scripts using batch commands in previous releases, you must
modify the scripts to use the new commands.

In addition, if you used Cygwin shell scripts for postprocessing or target
compilation, those scripts will no longer run on version 5.1. To support
scripting, the Polyspace software now includes Perl. You can access Perl in:

PolyspaceInstallDir\verifier\tools\perl\win32\bin\perl.exe

Enhanced Installer
Version 5.1 includes an enhanced and simplified installer for all Polyspace
products. The installation process is now faster and easier to complete than
in previous releases.

For more information, see the Polyspace Installation Guide.

Viewer Improvements
Enhanced exploring capability in the viewer to provide more precise locations
for C++ checks.

The source code view of the Polyspace viewer now displays the location of
C++ checks more accurately.

One-Click Enhancements
Enhanced Polyspace-In-One-Click options, to allow switching between
multiple projects using a browse history.

For more information, see “Day to Day Use ” in the Polyspace Products for
C/C++ User’s Guide.

Generic Target Option for C++
New Generic Target option for C++, to allow custom target processors. The
Generic Target option for C++ is similar to the previous Generic Target for C.

For more information, see “Defining Generic Targets” in the Polyspace
Products for C++ User’s Guide.

170

Version 5.1 (R2008a) Polyspace® Software

Class Analyzer Enhancements for C++
Enhanced class analyzer now calls all private constructors and destructors.

Previously, the sources analyzed were generally non-inherited public or
protected methods of the class. In version 5.1, the functions that are analyzed
include all non-inherited constructors and destructors, and all non-inherited
public or protected methods of the class.

For more information, see “Polyspace Class Analyzer” in the Polyspace
Products for C++ User’s Guide.

GNU Compiler Support for C++
New support for the GNU® compiler (GCC 3.4) for C++.

The new GNU dialect option supports variable length arrays, anonymous
structures, and other constructions allowed by GCC.

For more information, see “Dialect Issues” in the Polyspace Products for C++
User’s Guide.

Polyspace C++ Add-in for Visual Studio
Simplified user interface for Polyspace C++ add-in for Microsoft® Visual
Studio®.

The Polyspace Browser tab has been eliminated from the Visual Studio
window. To perform an analysis of a file in Visual Studio, you now simply
right-click on the file and select Start Polyspace.

For more information, see “Using Polyspace Software in Visual Studio” in the
Polyspace Products for C++ User’s Guide.

Operating System Support
Added support for the following operating systems:

• Solaris 2.10

• Windows XP x64 (32-bit mode)

171

Polyspace® Release Notes

For more information, see the Polyspace Installation Guide.

Polyspace Server for C/C++ Product

Removed Cygwin Software Dependency for Windows
Platforms
Previous versions of Polyspace products used Cygwin emulation to run UNIX
commands on Windows systems.

In version 5.1, the Cygwin software dependency has been removed. Removing
Cygwin simplifies the Polyspace product installation process while improving
the performance and robustness of the Polyspace Verification process.

Compatibility Considerations. Due to the Cygwin changes, Polyspace
Server for C/C++ Version 5.1 is not compatible with previous versions of
Polyspace products on Windows platforms. To avoid compatibility problems
on Windows platforms, you must upgrade all your Polyspace client and server
products at the same time.

If your Polyspace server is running on a Windows platform, the binary files
used for batch commands in previous releases will not work without Cygwin
software installed. In version 5.1, the software provides new .exe files for these
batch commands. However, these files are now located in a different location.

Commands Previous Location New Location

Standard PolyspaceInstallDir\
verifier\bin\

PolyspaceInstallDir\
verifier\wbin\

Remote
Launcher

Polyspace_Common\
RemoteLauncher\bin\

Polyspace_Common\
RemoteLauncher\wbin\

Viewer Polyspace_Common\
Viewer\bin\

Polyspace_Common\
Viewer\wbin\

If you wrote scripts using batch commands in previous releases, you must
modify the scripts to use the new commands.

172

Version 5.1 (R2008a) Polyspace® Software

In addition, if you used Cygwin shell scripts for postprocessing or target
compilation, those scripts will no longer run on version 5.1. To support
scripting, the Polyspace software now includes Perl. You can access Perl in:

PolyspaceInstallDir\verifier\tools\perl\win32\bin\perl.exe

Enhanced Installer
Version 5.1 includes an enhanced and simplified installer for all Polyspace
products. The installation process is now faster and easier to complete than
in previous releases.

For more information, see the Polyspace Installation Guide.

GNU Compiler Support for C++
New support for the GNU compiler (GCC 3.4) for C++.

The new GNU dialect option supports variable length arrays, anonymous
structures, and other constructions allowed by GCC.

For more information, see “Dialect Issues” in the Polyspace Products for C++
User’s Guide.

Operating System Support
Added support for the following operating systems:

• Solaris 2.10

• Windows XP x64 (32-bit mode)

For more information, see the Polyspace Installation Guide.

Polyspace Model Link SL Product

Enhanced Installer
Version 5.1 includes an enhanced and simplified installer for all Polyspace
products. The installation process is now faster and easier to complete than
in previous releases.

173

Polyspace® Release Notes

For more information, see the Polyspace Installation Guide.

Simulink Software Support
Added support for Simulink Version 7.1 (R2008a).

Operating System Support
Added support for the following operating systems:

• Solaris 2.10

• Windows XP x64 (32-bit mode)

For more information, see the Polyspace Installation Guide.

Polyspace Model Link TL Product

Enhanced Installer
Version 5.1 includes an enhanced and simplified installer for all Polyspace
products. The installation process is now faster and easier to complete than
in previous releases.

For more information, see the Polyspace Installation Guide.

Operating System Support
Added support for the following operating systems:

• Solaris 2.10

• Windows XP x64 (32-bit mode)

For more information, see the Polyspace Installation Guide.

174

Version 5.1 (R2008a) Polyspace® Software

Polyspace UML Link RH Product

Enhanced Installer
Version 5.1 includes an enhanced and simplified installer for all Polyspace
products. The installation process is now faster and easier to complete than
in previous releases.

For more information, see the Polyspace Installation Guide.

Rhapsody Support
Added support for Telelogic Rhapsody Version 7.1.

C Language Support
Added support for C language in Rhapsody software.

For more information, see the Polyspace UML Link RH User’s Guide.

Operating System Support
Added support for the following operating systems:

• Solaris 2.10

• Windows XP x64 (32-bit mode)

For more information, see the Polyspace Installation Guide.

175

Polyspace® Release Notes

Compatibility Summary for Polyspace Software
This table summarizes new features and changes that might cause
incompatibilities when you upgrade from an earlier version, or when you
use files on multiple versions. Details are provided in the description of the
new feature or change.

Version (Release) New Features and Changes with Version
Compatibility Impact

Latest Version for C/C++ Products
V8.2 (R2011b)

See the Compatibility Considerations
subheading for these new features or changes:

• “STD_LIB Check” on page 8

• “Enhanced MISRA-C Coding Rules Checker”
on page 9

• “No Gray Checks in Unreachable Code” on
page 11

• “Changes to Verification Results” on page 14

• “Changes to Coding Rules Checker Results”
on page 15

• “Running Multiple Verifications
Simultaneously” on page 19

Latest Version for Ada Products
V6.2 (R2011b)

See the Compatibility Considerations
subheading for these new features or changes:

• “No Gray Checks in Unreachable Code” on
page 22

• “Running Multiple Verifications
Simultaneously” on page 24

Latest Version for Model Link Products
V5.8 (R2011b)

None

176

Compatibility Summary for Polyspace® Software

Version (Release) New Features and Changes with Version
Compatibility Impact

V8.1 (R2011a) for C/C++ Products See the Compatibility Considerations
subheading for these new features or changes:

• “Overflow Check Customization” on page 33

• “Main Generator Improvements” on page 34

• “Precision Improvements” on page 62

• “Permissive Mode Set By Default” on page
36

• “Product Name Change in Files and Folders”
on page 38

• “Changes to Verification Results” on page 39

• “Changes to Coding Rules Checker Results”
on page 41

V6.1 (R2011a) for Ada Products See the Compatibility Considerations
subheading for these new features or changes:

• “Generated Main with Explicit Tasks and
Accept Statements” on page 50

• “Enhancements in Run-Time Checks
Perspective” on page 50

• “UOVFL and UNFL Checks Removed” on
page 50

• “NIV Checks for Universal Constants” on
page 51

• “Scaling Issue for Large Applications with
Nested Structures/Arrays” on page 52

• “Product Name Change in Files and Folders”
on page 52

• “Changes to Verification Results” on page 53

177

Polyspace® Release Notes

Version (Release) New Features and Changes with Version
Compatibility Impact

• “Generated Main with Explicit Tasks and
Accept Statements” on page 58

V5.7 (R2011a) for Model Link Products See the Compatibility Considerations
subheading for this new feature or change:

• “Overflow Check Customization” on page 60

• “Main Generator Improvements” on page 61

• “Precision Improvements” on page 62

V8.0 (R2010b) for C/C++ Products See the Compatibility Considerations
subheading for these new features or changes:

• “New Options to Classify Run-Time Checks
and Coding Rules Violations” on page 72

• “Main Generation in C++” on page 74

• “Default Target Processor” on page 77

• “Default Operating System Target” on page
77

• “Include Folders Added to Verification by
Default” on page 77

• “Changes to Verification Results” on page 78

V6.0 (R2010b) for Ada Products See the Compatibility Considerations
subheading for these new features or changes:

• “New Options to Classify Run-Time Checks”
on page 93

• “Default Target Processor” on page 95

V5.6 (R2010b) for Model Link Products See the Compatibility Considerations
subheading for this new feature or change:

• “Verification Options Set by Default” on
page 99

178

Compatibility Summary for Polyspace® Software

Version (Release) New Features and Changes with Version
Compatibility Impact

V7.2 for C/C++ (R2010a) See the Compatibility Considerations
subheading for these new features or changes:

• “Importing Review Comments” on page 103

• “Data Range Specifications (DRS)
Enhancements” on page 104

• “Methodological Assistant Enhancements”
on page 111

• “Class Analyzer Enhancements for C++” on
page 112

• “Change to Time Format in Log File” on
page 112

• “Merging of OVFL and UNFL Checks” on page
112

• “Improved UNR Checks” on page 113

• “Changes to Verification Results” on page
114

• “Changes to Coding Rules Checker Results”
on page 122

V5.5 for Ada (R2010a) See the Compatibility Considerations
subheading for this new feature or change:

• “Data Range Specifications for Custom
Simulink Data Objects” on page 134

V7.1 for C/C++ (R2009b) See the Compatibility Considerations
subheading for this new feature or change:

• “Changes to Coding Rules Checker Results”
on page 138

179

Polyspace® Release Notes

Version (Release) New Features and Changes with Version
Compatibility Impact

V5.4 for Ada (R2009b) See the Compatibility Considerations
subheading for this new feature or change:

• “Main Generator Enhancements” on page
142

V7.0 for C/C++ (R2009a) See the Compatibility Considerations
subheading for these new features or changes:

• “Architecture Improvements” on page 151

• “Mathematical Functions Included in Stubs”
on page 152

• “Automatic Orange Tester” on page 154

V5.3 for Ada (R2009a) None

V6.0 for C/C++ (R2008b) None

V5.2 for Ada (R2008b) None

V5.1 (R2008a) See the Compatibility Considerations
subheading for this new feature or change:

• “Removed Cygwin Software Dependency for
Windows Platforms” on page 165

180

	toc
	Summary by Version
	Using Release Notes
	What Is in the Release Notes
	New Features and Changes
	Version Compatibility Considerations
	Fixed Bugs and Known Problems
	Documentation on the MathWorks Web Site
	Version 8.2 (R2011b) Polyspace for C/C++ Products
	Polyspace Client for C/C++ Product
	STD_LIB Check
	Enhanced MISRA-C Coding Rules Checker
	Review Orange Checks that are Potential Run-Time Errors
	Display Sources of Orange Checks
	Enhanced Automatic Orange Tester
	No Gray Checks in Unreachable Code
	Global Variable Range Information
	Read and Write Access in Dead Code
	Run All Verifications in Project
	Specifying Functions Not Called by Generated Main
	Stubbing Specific Functions
	Changes to Verification Results
	Changes to Coding Rules Checker Results
	Changes to Analysis Options
	Deprecated Options

	Polyspace Server for C/C++ Product
	Running Multiple Verifications Simultaneously
	Polyspace Metrics

	Version 6.2 (R2011b) Polyspace for Ada Products
	Polyspace Client for Ada Product
	Review Orange Checks that are Potential Run-Time Errors
	No Gray Checks in Unreachable Code
	Global Variable Range Information
	Read and Write Access in Dead Code
	Run All Verifications in Project
	Green NIV check for Unchecked_Conversion Function

	Polyspace Server for Ada Product
	Running Multiple Verifications Simultaneously
	Polyspace Metrics

	Version 5.8 (R2011b) Polyspace Model Link Products
	Polyspace Model Link SL Product
	Polyspace Verification Pane in Simulink Configuration Tree
	Support for 16-Bit Cross Compiler
	Enforcement of Modeling rules for Optimal Verification Results
	Simulink Software Support

	Polyspace UML Link RH Product
	Product Rewritten in Java

	Version 8.1 (R2011a) Polyspace for C/C++ Products
	Polyspace Client for C/C++ Product
	Code Metrics (New for C++)
	Saving Polyspace Metrics Review
	Compilation Assistant
	Improved Search Function
	Back to Source Function in Run-Time Checks Perspective
	Structure Fields in Data Dictionary
	Overflow Check Customization
	Main Generator Improvements
	Verification Time Limit
	Continue Verification with Compile Errors
	Precision Improvements
	Permissive Mode Set By Default
	Default Project Location
	Variable Range Inconsistency between Variable Access Pane and To
	Visual Studio Integration
	Product Name Change in Files and Folders
	Visual Studio Support
	Eclipse IDE Support
	License Manager Support
	Changes to Verification Results
	Changes to Coding Rules Checker Results
	Changes to Analysis Options

	Polyspace Server for C/C++ Product
	Code Metrics (New for C++)
	Saving Polyspace Metrics Review
	Automatic Comment Import for Server Verifications
	License Manager Support

	Version 6.1 (R2011a) Polyspace for Ada Products
	Polyspace Client for Ada Product
	Code Metrics
	Saving Polyspace Metrics Review
	Support for Rational and Aonix Compilers
	Multi-Core Support
	Generated Main with Explicit Tasks and Accept Statements
	Enhancements in Run-Time Checks Perspective
	UOVFL and UNFL Checks Removed
	NIV Checks for Universal Constants
	Variable Range Inconsistency between Variable Access Pane and To
	Verification Time Limit
	Automatic Addition of Specifications for Selected Source Files
	Stubbed Tasks
	Scaling Issue for Large Applications with Nested Structures/Arra
	Product Name Change in Files and Folders
	License Manager Support
	Changes to Verification Results
	Changes to Analysis Options

	Polyspace Server for Ada Product
	Code Metrics
	Saving Polyspace Metrics Review
	Multi-Core Support
	Generated Main with Explicit Tasks and Accept Statements
	Automatic Comment Import for Server Verifications
	License Manager Support

	Version 5.7 (R2011a) Polyspace Model Link Products
	Polyspace Model Link SL Product
	Overflow Check Customization
	Main Generator Improvements
	Data Range Management
	Block Annotation
	Precision Improvements
	Simulink Software Support

	Version 8.0 (R2010b) Polyspace for C/C++ Products
	Polyspace Client for C/C++ Product
	Polyspace Graphical User Interface
	Project Manager Perspective. The Project Manager perspective al

	Permissiveness on File and Folder Names
	MISRA C++ Coding Rules Support
	Coding Rules Checker Enhancements
	Code Metrics (for C)
	Filtering Orange Checks Caused by Input Data (New for C++)
	New Options to Classify Run-Time Checks and Coding Rules Violati
	Japanese and Korean Text in Comments
	Pointer Information in the Run-Time Checks Perspective
	Main Generation in C++
	Multiple Functions Called Before Main
	Support for C99 Extensions (C)
	New Target Processor Support (C)
	Default Target Processor
	Default Operating System Target
	Include Folders Added to Verification by Default
	Operating System Support
	Changes to Verification Results
	Changes to Coding Rules Checker Results

	Polyspace Server for C/C++ Product
	Polyspace Metrics Web Interface
	Automatic Verification
	Operating System Support

	Version 6.0 (R2010b) Polyspace for Ada Products
	Polyspace Client for Ada Product
	Polyspace Graphical User Interface
	Data Range Specifications
	Extended Support for Tasks
	Preprocessor Macros for Compilation
	New Options to Classify Run-Time Checks
	Permissiveness on File and Folder Names
	Default Target Processor
	Operating System Support

	Polyspace Server for Ada Product
	Polyspace Metrics Web Interface
	Automatic Verification
	Operating System Support

	Version 5.6 (R2010b) Polyspace Model Link Products
	Polyspace Model Link SL Product
	Data Range Management
	Verification Options Set by Default
	Simulink Software Support

	Polyspace UML Link RH Product
	Rhapsody Support

	Version 7.2 (R2010a) Polyspace for C/C++ Products
	Polyspace Client for C/C++ Product
	License Activation
	MISRA C++ Checker
	Source Code Comments
	Importing Review Comments
	Data Range Specifications (DRS) Enhancements
	Pointer Information in the Viewer
	Enhanced Call Tree View and Variables View (Data Dictionary)
	Enhanced Search Function in Viewer
	Filtering Orange Checks in Viewer (C only)
	Methodological Assistant Enhancements
	Class Analyzer Enhancements for C++
	Change to Time Format in Log File
	Merging of OVFL and UNFL Checks
	Improved UNR Checks
	Changes to Verification Results
	Changes to Coding Rules Checker Results
	Enumerated Types Support
	New Target Processor Support
	Operating System Support

	Polyspace Server for C/C++ Product
	License Activation
	Queue Manager Interface
	Operating System Support

	Version 5.5 (R2010a) Polyspace for Ada and Model Link Products
	Polyspace Client for Ada Product
	License Activation
	Source Code Comment Support
	Eclipse Integration
	Operating System Support

	Polyspace Server for Ada Product
	License Activation
	Queue Manager Interface
	Operating System Support

	Polyspace Model Link SL Product
	License Activation
	Data Range Specifications for Custom Simulink Data Objects
	Simulink Software Support

	Version 7.1 (R2009b) Polyspace for C/C++ Products
	Polyspace Client for C/C++ Product
	Report Generator
	Viewer Enhancements
	Global Data Graphs
	Unit-by-unit Verification
	Changes to Coding Rules Checker Results
	Operating System Support

	Polyspace Server for C/C++ Product
	Operating System Support

	Version 5.4 (R2009b) Polyspace for Ada and Model Link Products
	Polyspace Client for Ada Product
	Report Generator
	Main Generator Enhancements
	Global Data Graphs
	Unit-by-unit Verification
	Operating System Support

	Polyspace Server for Ada Product
	Operating System Support

	Polyspace Model Link SL Product
	Simulink Software Support

	Version 7.0 (R2009a) Polyspace for C/C++ Products
	Polyspace Client for C/C++ Product
	JSF++ Support
	Back to Source Link
	Eclipse Integration
	Performance Improvements for Multi-Core Systems
	Architecture Improvements
	Mathematical Functions Included in Stubs
	Character Encoding Options
	Automatic Orange Tester
	Operating System Support

	Polyspace Server for C/C++ Product
	Performance Improvements for Multi-Core Systems
	Architecture Improvements
	Operating System Support

	Version 5.3 (R2009a) Polyspace for Ada and Model Link Products
	Polyspace Client for Ada Product
	Character Encoding Options
	Operating System Support

	Polyspace Server for Ada Product
	Operating System Support

	Polyspace Model Link SL Product
	Polyspace Menu Option in Simulink
	Manual Selection of Data Range Specifications (DRS) File
	Simulink Software Support

	Polyspace UML Link RH Product
	Rhapsody Support

	Version 6.0 (R2008b) Polyspace for C/C++ Products
	Polyspace Client for C/C++ Product
	Automatic Orange Tester
	JSF++ Support
	Operating System Support

	Polyspace Server for C/C++ Product
	Operating System Support

	Version 5.2 (R2008b) Polyspace for Ada and Model Link Products
	Polyspace Client for Ada Product
	Operating System Support

	Polyspace Server for Ada Product
	Operating System Support

	Polyspace Model Link SL Product
	Model Reference Support
	Stateflow Chart Support
	Simulink Software Support
	Operating System Support

	Polyspace Model Link TL Product
	Operating System Support

	Polyspace UML Link RH Product
	Ada Language Support
	Operating System Support

	Version 5.1 (R2008a) Polyspace Software
	Polyspace Client for Ada Product
	Removed Cygwin Software Dependency for Windows Platforms
	Enhanced Installer
	Viewer Improvements
	Enhanced Compilation Checks
	One-Click Enhancements
	Operating System Support

	Polyspace Server for Ada Product
	Removed Cygwin Software Dependency for Windows Platforms
	Enhanced Installer
	Operating System Support

	Polyspace Client for C/C++ Product
	Removed Cygwin Software Dependency for Windows Platforms
	Enhanced Installer
	Viewer Improvements
	One-Click Enhancements
	Generic Target Option for C++
	Class Analyzer Enhancements for C++
	GNU Compiler Support for C++
	Polyspace C++ Add-in for Visual Studio
	Operating System Support

	Polyspace Server for C/C++ Product
	Removed Cygwin Software Dependency for Windows Platforms
	Enhanced Installer
	GNU Compiler Support for C++
	Operating System Support

	Polyspace Model Link SL Product
	Enhanced Installer
	Simulink Software Support
	Operating System Support

	Polyspace Model Link TL Product
	Enhanced Installer
	Operating System Support

	Polyspace UML Link RH Product
	Enhanced Installer
	Rhapsody Support
	C Language Support
	Operating System Support

	Compatibility Summary for Polyspace Software

